OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13268–13276

Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, O. Thomas, and A. J. Shields  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13268-13276 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of two high speed avalanche photodiodes in exploring higher order photon correlations. By employing the photon number resolving capability of the photodiodes the response to higher order photon coincidences can be measured. As an example we show experimentally the sensitivity to higher order correlations for three types of photon sources with distinct photon statistics. This higher order correlation technique could be used as a low cost and compact tool for quantifying the degree of correlation of photon sources employed in quantum information science.

© 2011 OSA

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 30, 2011
Revised Manuscript: May 9, 2011
Manuscript Accepted: May 10, 2011
Published: June 24, 2011

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, O. Thomas, and A. J. Shields, "Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes," Opt. Express 19, 13268-13276 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130(6), 2529–2539 (1963). [CrossRef]
  2. D. F. Walls and G. J. Milburn, “Coherence properties of the electromagnetic field,” in Quantum Optics (Springer-Verlag, 2008), pp. 29–55. [CrossRef]
  3. K. Usami, Y. Nambu, B. S. Shi, A. Tomita, and K. Nakamura, “Observation of antinormally ordered Hanbury Brown-Twiss correlations,” Phys. Rev. Lett. 92(11), 113601 (2004). [CrossRef] [PubMed]
  4. R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956). [CrossRef]
  5. T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, and C. I. Westbrook, “Comparison of the Hanbury Brown-Twiss effect for bosons and fermions,” Nature 445(7126), 402–405 (2007). [CrossRef] [PubMed]
  6. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977). [CrossRef]
  7. G. S. Agarwal, “Field–correlation effects in multiphoton absorption processes,” Phys. Rev. A 1(5), 1445–1459 (1970). [CrossRef]
  8. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single–photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  10. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001). [CrossRef] [PubMed]
  11. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single–photon source,” Science 295(5552), 102–105 (2002). [CrossRef]
  12. Y. Adachi, T. Yamamoto, M. Koashi, and N. Imoto, “Boosting up quantum key distribution by learning statistics of practical single-photon sources,” New J. Phys. 11(11), 113033 (2009). [CrossRef]
  13. Y. Qu, S. Singh, and C. D. Cantrell, “Measurements of higher order photon bunching of light beams,” Phys. Rev. Lett. 76(8), 1236–1239 (1996). [CrossRef] [PubMed]
  14. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High–order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430–1437 (2010), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-18-2-1430 . [CrossRef] [PubMed]
  15. M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett. 104(6), 063602 (2010). [CrossRef] [PubMed]
  16. D. A. Kalashikov, S. H. Tan, M. V. Chekhova, and L. A. Krivitsky, “Accessing photon bunching with photon number resolving multi-pixel detector,” Opt. Express 19(10), 9352–9363 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-10-9352 . [CrossRef]
  17. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009). [CrossRef]
  18. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  19. B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche–photodiode–based photon–number–resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
  20. O. Thomas, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97(3), 031102 (2010). [CrossRef]
  21. L. Mandel and E. Wolf, “Quantum theory of photoelectric light detection,” in Optical Coherence and Quantum Optics (Cambridge University Press, 1995), pp. 683–740.
  22. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009). [CrossRef]
  23. A. W. Smith and J. A. Armstrong, “Laser photon counting distributions near threshold,” Phys. Rev. Lett. 16(25), 1169–1172 (1966). [CrossRef]
  24. G. Lachs, “Theoretical aspects of mixtures of thermal and coherent radiation,” Phys. Rev. 138(4B), B1012–B1016 (1965). [CrossRef]
  25. The value of g(2) ∼ 1.2 is corroborated experimentally by an independent measurement of g(2).
  26. M. Aßmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009). [CrossRef] [PubMed]
  27. P. Meystre and M. Sargent, “Field quantization,” in Elements of Quantum Optics (Springer–Verlag, 1998), pp. 263–285.
  28. E. Waks, E. Diamanti, and Y. Yamamoto, “Generation of photon number states,” New J. Phys. 8(1), 4 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited