OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13306–13311

Initially twisted pi cell fabricated using liquid crystal-silica colloidal dispersions

Che-Wei Chang, Chi-Yen Huang, and Heng-Cheng Song  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13306-13311 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an initially twisted pi cell fabricated by doping silica nanoparticles into the conventional pi cell. With AC high voltage, the director distortion of the liquid crystals (LCs) near the substrate surface creates a lifting force, which moves the silica nanoparticles toward the substrate surfaces. The accumulated silica nanoparticles on the substrate surfaces stabilize the LCs at the twisted pi state when the AC high voltage is turned off. The formed twisted pi state is permanent. The operation voltage and the response time of the initially twisted pi cell are less than those of the conventional pi cell.

© 2011 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.1140) Optical design and fabrication : Alignment
(230.3720) Optical devices : Liquid-crystal devices
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

Original Manuscript: May 4, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 14, 2011
Published: June 24, 2011

Che-Wei Chang, Chi-Yen Huang, and Heng-Cheng Song, "Initially twisted pi cell fabricated using liquid crystal-silica colloidal dispersions," Opt. Express 19, 13306-13311 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, 2003).
  2. A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009). [CrossRef] [PubMed]
  3. O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007). [CrossRef] [PubMed]
  4. D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002). [CrossRef] [PubMed]
  5. L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008). [CrossRef]
  6. http://en.wikipedia.org/wiki/Dielectrophoresis
  7. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor and Francis, 1996).
  8. R. Eidenschink and W. H. De Jeu, “Static scattering in filled nematic: new liquid crystal display technique,” Electron. Lett. 27(13), 1195 (1991). [CrossRef]
  9. D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005). [CrossRef]
  10. C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008). [CrossRef]
  11. C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009). [CrossRef] [PubMed]
  12. P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984). [CrossRef]
  13. H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005). [CrossRef]
  14. C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007). [CrossRef]
  15. X. J. Yu and H. S. Kwok, “Fast response film-compensated liquid crystal on silicon display,” Appl. Phys. Lett. 89(3), 031104 (2006). [CrossRef]
  16. S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001). [CrossRef]
  17. Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006). [CrossRef]
  18. S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007). [CrossRef]
  19. T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008). [CrossRef]
  20. C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011). [CrossRef]
  21. A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited