OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13428–13435

Transverse wave propagation in photonic crystal based on holographic polymer-dispersed liquid crystal

Andy Ying-Guey Fuh, Ming Shian Li, and Shing Trong Wu  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13428-13435 (2011)
http://dx.doi.org/10.1364/OE.19.013428


View Full Text Article

Enhanced HTML    Acrobat PDF (1471 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study investigates the transversely propagating waves in a body-centered tetragonal photonic crystal based on a holographic polymer-dispersed liquid crystal film. Rotating the film reveals three different transverse propagating waves. Degeneracy of optical Bloch waves from reciprocal lattice vectors explains their symmetrical distribution.

© 2011 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 31, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 19, 2011
Published: June 27, 2011

Citation
Andy Ying-Guey Fuh, Ming Shian Li, and Shing Trong Wu, "Transverse wave propagation in photonic crystal based on holographic polymer-dispersed liquid crystal," Opt. Express 19, 13428-13435 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Y. Dong, X. L. Yang, and L. Z. Cai, “Anomalous refractive effects in honeycomb lattice photonic crystals formed by holographic lithography,” Opt. Express 18(16), 16302–16308 (2010). [CrossRef] [PubMed]
  2. D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express 16(22), 17209–17214 (2008). [CrossRef] [PubMed]
  3. R. J. Liu, Z. Y. Li, F. Zhou, and D. Z. Zhang, “Waveguide coupler in three-dimensional photonic crystal,” Opt. Express 16(8), 5681–5688 (2008). [CrossRef] [PubMed]
  4. S. T. Wu, M. S. Li, and A. Y. G. Fuh, “Unusual refractions in photonic crystals based on polymer-dispersed liquid crystal films,” Appl. Phys. Lett. 91(25), 251117 (2007). [CrossRef]
  5. Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010). [CrossRef]
  6. P. Zhang, C. Lou, S. Liu, J. Zhao, J. Xu, and Z. Chen, “Tuning of Bloch modes, diffraction, and refraction by two-dimensional lattice reconfiguration,” Opt. Lett. 35(6), 892–894 (2010). [CrossRef] [PubMed]
  7. E. Cassan, D. Bernier, G. Maire, D. M. Morini, and L. Vivien, “Bloch wave decomposition for prediction of strong light coupling efficiency into extended planar photonic crystals,” J. Opt. Soc. Am. B 24(5), 1211–1215 (2007). [CrossRef]
  8. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdre, “Bloch wave propagation in two-dimensional photonic crystals: Influence of the polarization,” Opt. Quantum Electron. 37(1–3), 293–307 (2005). [CrossRef]
  9. M. S. Li, S. T. Wu, and A. Y.-G. Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006). [CrossRef]
  10. M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1–2), 245–252 (2010). [CrossRef]
  11. W. Hergert and M. Däne, “Group theoretical investigations of photonic band structures,” Phys. Status Solidi 197(3), 620–634 (2003). [CrossRef]
  12. K. Sakoda, “Group-theoretical classification of eigenmodes in three-dimensional photonic lattices,” Phys. Rev. B 55(23), 15345–15348 (1997). [CrossRef]
  13. P. Zhang, N. K. Efremidis, A. Miller, Y. Hu, and Z. Chen, “Observation of coherent destruction of tunneling and unusual beam dynamics due to negative coupling in three-dimensional photonic lattices,” Opt. Lett. 35(19), 3252–3254 (2010). [CrossRef] [PubMed]
  14. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005). [CrossRef]
  15. Z. Peng, T. De-Xing, Z. Jian-Lin, S. Kun, Z. Jian-Bo, L. Bi-Li, and Y. Dong-Sheng, “Light-Induced Array of Three-Dimensional Waveguides in Lithium Niobate by Employing Two-Beam Interference Field,” Chin. Phys. Lett. 21(8), 1558–1561 (2004). [CrossRef]
  16. Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006). [CrossRef] [PubMed]
  17. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005). [CrossRef] [PubMed]
  18. R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “Refraction and rightness in photonic crystals,” Opt. Express 13(21), 8596–8605 (2005). [CrossRef] [PubMed]
  19. S. Mahmoodian, A. A. Sukhorukov, S. Ha, A. V. Lavrinenko, C. G. Poulton, K. B. Dossou, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges,” Opt. Express 18(25), 25693–25701 (2010). [CrossRef] [PubMed]
  20. O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B 68(3), 035110 (2003). [CrossRef]
  21. G. Sun and A. G. Kirk, “On the relationship between Bloch modes and phase-related refractive index of photonic crystals,” Opt. Express 15(20), 13149–13154 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited