OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13454–13463

Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films

Yong Wang, Xuejun Liu, Desiré Whitmore, Wendong Xing, and Eric O. Potma  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13454-13463 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate dual-color nonlinear excitation of quantum dots positioned onto a gold film at distances up to 40 μm away from a micrometer sized focused laser spot. We attribute the observed remote nonlinear signal to the excitation of two independent surface plasmon polariton (SPP) modes excited at the laser spot in the gold film, which subsequently propagate in a collinear fashion to a distant site and provide the surface field required for nonlinear excitation of the target. This scheme decouples the illuminating photon flux from surface plasmon mediated nonlinear excitation of the target, which provides more control of unwanted heating effects at the target site and represents an attractive approach for surface-mediated femtosecond nonlinear examinations of molecules.

© 2011 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: March 10, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 15, 2011
Published: June 28, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Yong Wang, Xuejun Liu, Desiré Whitmore, Wendong Xing, and Eric O. Potma, "Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films," Opt. Express 19, 13454-13463 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, ed., Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  3. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977). [CrossRef]
  4. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]
  6. J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007). [CrossRef] [PubMed]
  7. G. Haran, “Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields,” Acc. Chem. Res . 8, 1135–1143 (2010). [CrossRef]
  8. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999). [CrossRef]
  9. A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007). [CrossRef]
  10. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003). [CrossRef]
  11. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004). [CrossRef] [PubMed]
  12. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986). [CrossRef]
  13. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005). [CrossRef]
  14. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef] [PubMed]
  15. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008). [CrossRef] [PubMed]
  16. Y. Wang, C-Yu Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3, 1–52 (2011). [CrossRef]
  17. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999). [CrossRef]
  18. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000). [CrossRef]
  19. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005). [CrossRef]
  20. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007). [CrossRef] [PubMed]
  21. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008). [CrossRef] [PubMed]
  22. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009). [CrossRef] [PubMed]
  23. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007). [CrossRef] [PubMed]
  24. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010). [CrossRef] [PubMed]
  25. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007). [CrossRef] [PubMed]
  26. J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009). [CrossRef] [PubMed]
  27. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009). [CrossRef] [PubMed]
  28. H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002). [CrossRef]
  29. A. Kuzyk, M. Pettersson, J. J. Toppari, T. K. Hakala, H. Tikkanen, H. Kunttu, and P. Törmä, “Molecular coupling of light with plasmonic waveguides,” Opt. Express 15, 9908–9917 (2007). [CrossRef] [PubMed]
  30. J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006). [CrossRef] [PubMed]
  31. J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010). [CrossRef]
  32. C. K. Shen, A. R. B. de Castro, and Y. R. Shen, “Coherent second-harmonic generation by counterpropagating surface plasmons,” Opt. Lett. 4, 393–394 (1979). [CrossRef] [PubMed]
  33. X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett. 36, 2348–2350 (2011). [CrossRef] [PubMed]
  34. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007). [CrossRef] [PubMed]
  35. S. Palomda and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008). [CrossRef]
  36. E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  37. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996). [CrossRef] [PubMed]
  38. A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001). [CrossRef]
  39. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006). [CrossRef]
  40. P. A. Letnes, I. Simonson, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011). [CrossRef]
  41. J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010). [CrossRef] [PubMed]
  42. J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009). [CrossRef]
  43. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited