OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13480–13496

Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels

Antonio García-Zambrana, Carmen Castillo-Vázquez, and Beatriz Castillo-Vázquez  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13480-13496 (2011)
http://dx.doi.org/10.1364/OE.19.013480


View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric turbulence produces fluctuations in the irradiance of the transmitted optical beam, which is known as atmospheric scintillation, severely degrading the performance over free-space optical (FSO) links. Additionally, since FSO systems are usually installed on high buildings, building sway causes vibrations in the transmitted beam, leading to an unsuitable alignment between transmitter and receiver and, hence, a greater deterioration in performance. In this paper, the outage probability as a performance measure for multiple-input/multiple-output (MIMO) FSO communication systems with intensity modulation and direct detection (IM/DD) over strong atmospheric turbulence channels with pointing errors is analyzed. Novel closed-form expressions for the outage probability as well as their corresponding asymptotic expressions are presented when the irradiance of the transmitted optical beam is susceptible to either strong turbulence conditions, following a negative exponential distribution, and pointing error effects, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results show that the diversity order is independent of the pointing error when the equivalent beam radius at the receiver is at least twice the value of the pointing error displacement standard deviation at the receiver. Simulation results are further demonstrated to confirm the analytical results. Additionally, since proper FSO transmission requires transmitters with accurate control of their beamwidth, asymptotic expressions here obtained for different diversity techniques are used to find the optimum beamwidth that minimizes the outage performance.

© 2011 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 19, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 10, 2011
Published: June 28, 2011

Citation
Antonio García-Zambrana, Carmen Castillo-Vázquez, and Beatriz Castillo-Vázquez, "Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels," Opt. Express 19, 13480-13496 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997). [CrossRef]
  2. L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, “Hybrid optical RF airborne communications,” Proc. IEEE 97(6), 1109–1127 (2009). [CrossRef]
  3. W. Lim, C. Yun, and K. Kim, “BER performance analysis of radio over free-space optical systems considering laser phase noise under gamma-gamma turbulence channels,” Opt. Express 17(6), 4479–4484 (2009). [CrossRef] [PubMed]
  4. L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001). [CrossRef]
  5. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002). [CrossRef]
  6. E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004). [CrossRef]
  7. I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. Neifeld, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel,” J. Lightwave Technol. 26(5), 478–487 (2008). [CrossRef]
  8. M. Simon and V. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4(1), 35–39 (2005). [CrossRef]
  9. C. Abou-Rjeily and W. Fawaz, “Space-time codes for MIMO ultra-wideband communications and MIMO free-space optical communications with PPM,” IEEE J. Sel. Areas Commun. 26(6), 938–947 (2008). [CrossRef]
  10. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009). [CrossRef]
  11. E. Bayaki and R. Schober, “On space-time coding for free-space optical systems,” IEEE Trans. Commun. 58(1), 58–62 (2010). [CrossRef]
  12. A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection transmit diversity for FSO links over strong atmospheric turbulence channels,” IEEE Photon. Technol. Lett. 21(14), 1017–1019 (2009). [CrossRef]
  13. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18(6), 5356–5366 (2010). [CrossRef] [PubMed]
  14. S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE Trans. Wireless Commun. 2(4), 626–629 (2003). [CrossRef]
  15. S. Arnon, “Effects of atmospheric turbulence and building sway on optical wireless-communication systems,” Opt. Lett. 28(2), 129–131 (2003). [CrossRef] [PubMed]
  16. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightwave Technol. 25(7), 1702–1710 (2007). [CrossRef]
  17. H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, “BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,” IEEE Commun. Lett. 12(1), 44–46 (2008). [CrossRef]
  18. H. G. Sandalidis, “Coded free-space optical links over strong turbulence and misalignment fading channels,” IEEE Trans. Commun. 59(3), 669–674 (2011). [CrossRef]
  19. D. K. Borah and D. G. Voelz, “Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence,” J. Lightwave Technol. 27(18), 3965–3973 (2009). [CrossRef]
  20. W. Gappmair, S. Hranilovic, and E. Leitgeb, “Performance of PPM on terrestrial FSO links with turbulence and pointing errors,” IEEE Commun. Lett. 14(5), 468–470 (2010). [CrossRef]
  21. A. A. Farid and S. Hranilovic, “Diversity gains for MIMO wireless optical intensity channels with atmospheric fading and misalignment,” in Proc. IEEE GLOBECOM Workshops (GC Wkshps, 2010), pp. 1015–1019. [CrossRef]
  22. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001). [CrossRef]
  23. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Rate-adaptive FSO links over atmospheric turbulence channels by jointly using repetition coding and silence periods,” Opt. Express 18(24), 25422–25440 (2010). [CrossRef] [PubMed]
  24. B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER expression for FSO links with transmit laser selection over exponential atmospheric turbulence channels,” Electron. Lett. 45(23), 1185–1187 (2009). [CrossRef]
  25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 9th ed. (Dover, 1970).
  26. M. K. Simon and M.-S. Alouini, Digital Communications over Fading Channels , 2nd ed. (Wiley-IEEE Press, 2005).
  27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products , 7th ed. (Academic Press Inc., 2007).
  28. Z. Wang and G. B. Giannakis, “A simple and general parameterization quantifying performance in fading channels,” IEEE Trans. Commun. 51(8), 1389–1398 (2003). [CrossRef]
  29. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6(8), 2813–2819 (2007). [CrossRef]
  30. H. A. David and H. N. Nagaraja, Order Statistics , 3rd ed. (John Wiley and Sons Inc., 2003). [CrossRef]
  31. H. G. Sandalidis, “Optimization models for misalignment fading mitigation in optical wireless links,” IEEE Commun. Lett. 12(5), 395–397 (2008). [CrossRef]
  32. Wolfram Research Inc., Mathematica , version 8.0.1. ed. (Wolfram Research, Inc., Champaign, Illinois, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited