OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13557–13564

Continuously tunable slow-light device consisting of heater-controlled silicon microring array

Fumihiro Shinobu, Norihiro Ishikura, Yoshiki Arita, Takemasa Tamanuki, and Toshihiko Baba  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13557-13564 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a tunable slow-light device consisting of all-pass Si microrings. A compact device of 0.014 mm2 footprint is fabricated by using CMOS-compatible process, and its center wavelength, bandwidth and delay are continuously tuned by integrated heaters. The tuning range is 300 ps at fixed wavelengths with a 1 nm bandwidth. Eye opening of 40 Gbps non-return-to-zero signals is observed at up to a 150 ps delay and a 4 bit buffering capacity is confirmed, which corresponds to a spatial buffering density of 0.29 kbit/mm2.

© 2011 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

Original Manuscript: April 20, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 17, 2011
Published: June 29, 2011

Fumihiro Shinobu, Norihiro Ishikura, Yoshiki Arita, Takemasa Tamanuki, and Toshihiko Baba, "Continuously tunable slow-light device consisting of heater-controlled silicon microring array," Opt. Express 19, 13557-13564 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Tucker, P.-C. Ku, and C. Chang-Hasnain, “Slow-light optical buffers - capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005). [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  3. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008). [CrossRef] [PubMed]
  4. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010). [CrossRef]
  5. J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching network,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008). [CrossRef]
  6. W. M. J. Green, H. F. Hamann, L. Sekaric, M. J. Rooks, and Y. A. Vlasov, “Ultra-compact reconfigurable silicon optical devices using micron-scale localized thermal heating,” Tech. Dig. Opt. Fiber Commun. Conf., OtuM3 (2007).
  7. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]
  8. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008). [CrossRef] [PubMed]
  9. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010). [CrossRef]
  10. Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightwave Technol. 26(23), 3744–3751 (2008). [CrossRef]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  12. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2000).
  13. H. P. Uranus and H. J. W. M. Hoekstra, “Modeling of loss-induced superluminal and negative group velocity in two-port ring-resonator circuits,” J. Lightwave Technol. 25(9), 2376–2384 (2007). [CrossRef]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(No. 8B), 6658–6662 (2006). [CrossRef]
  15. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited