OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13675–13685

Controlling cascade dressing interaction of four-wave mixing image

Changbiao Li, Yanpeng Zhang, Huaibin Zheng, Zhiguo Wang, Haixia Chen, Suling Sang, Ruyi Zhang, Zhenkun Wu, Liang Li, and Peiying Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13675-13685 (2011)
http://dx.doi.org/10.1364/OE.19.013675


View Full Text Article

Enhanced HTML    Acrobat PDF (1665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report our observations on enhancement and suppression of spatial four-wave mixing (FWM) images and the interplay of four coexisting FWM processes in a two-level atomic system associating with three-level atomic system as comparison. The phenomenon of spatial splitting of the FWM signal has been observed in both x and y directions. Such FWM spatial splitting is induced by the enhanced cross-Kerr nonlinearity due to atomic coherence. The intensity of the spatial FWM signal can be controlled by an additional dressing field. Studies on such controllable beam splitting can be very useful in understanding spatial soliton formation and interactions, and in applications of spatial signal processing.

© 2011 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.1670) Quantum optics : Coherent optical effects
(300.2570) Spectroscopy : Four-wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 11, 2011
Revised Manuscript: May 21, 2011
Manuscript Accepted: June 19, 2011
Published: June 30, 2011

Citation
Changbiao Li, Yanpeng Zhang, Huaibin Zheng, Zhiguo Wang, Haixia Chen, Suling Sang, Ruyi Zhang, Zhenkun Wu, Liang Li, and Peiying Li, "Controlling cascade dressing interaction of four-wave mixing image," Opt. Express 19, 13675-13685 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–9999 (1997). [CrossRef]
  2. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995). [CrossRef] [PubMed]
  3. B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23(10), 804–806 (1998). [CrossRef] [PubMed]
  4. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009). [CrossRef]
  5. S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007). [CrossRef] [PubMed]
  6. Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007). [CrossRef]
  7. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999). [CrossRef]
  8. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001). [CrossRef]
  9. Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008). [CrossRef]
  10. Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010). [CrossRef] [PubMed]
  11. C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009). [CrossRef]
  12. G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990). [CrossRef] [PubMed]
  13. R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002). [CrossRef] [PubMed]
  14. A. J. Stentz, M. Kauranen, J. J. Maki, G. P. Agrawal, and R. W. Boyd, “Induced focusing and spatial wave breaking from cross-phase modulation in a self-defocusing medium,” Opt. Lett. 17(1), 19–21 (1992). [CrossRef] [PubMed]
  15. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001). [CrossRef] [PubMed]
  16. W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998). [CrossRef]
  17. Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010). [CrossRef]
  18. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008). [CrossRef] [PubMed]
  19. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]
  20. W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000). [CrossRef] [PubMed]
  21. Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited