OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13686–13691

Influence of large signal modulation on photonic UWB generation based on electro-optic modulator

Rong Gu, Shilong Pan, Xiangfei Chen, Minghai Pan, and De Ben  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13686-13691 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (953 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Various schemes based on electro-optic modulators have been reported to generate ultra-wideband (UWB) signals in the optical domain, but the availability of these methods always relies on small signal modulation. In this paper, the influence of large signal modulation on two typical schemes, representing two major categories of external-modulator-based photonic UWB generation schemes, is analytically and numerically studied. While the quasi single-sideband UWB (QSSB-UWB) pulse can maintain its shape, the Gaussian UWB (GUWB) generation scheme suffers serious modulation distortion when the phase modulation index is greater than π/6. The modulation distortion would have negative impact on the receiver sensitivity when the signal is sent to a correlation receiver.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(350.4010) Other areas of optics : Microwaves

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 11, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: June 19, 2011
Published: June 30, 2011

Rong Gu, Shilong Pan, Xiangfei Chen, Minghai Pan, and De Ben, "Influence of large signal modulation on photonic UWB generation based on electro-optic modulator," Opt. Express 19, 13686-13691 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003). [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]
  3. C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, “Direct transmission of ultra wide band signals using single mode radio-over-fiber system,” Proc. 2005 Asia-Pacific Microw. Conf. (APMC 2005) 1–5, 1315–1317 (2005).
  4. S. L. Pan and J. P. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010). [CrossRef]
  5. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010). [CrossRef]
  6. Y. Le Guennec, A. Pizzinat, S. Meyer, B. Charboonnier, P. Lombard, M. Lourdiane, B. Cabon, C. Algani, A.-L. Billabert, M. Terre, C. Rurnelhard, J.-L. Polleux, H. Jacquinot, S. Bories, and C. Sillans, “Low-cost transparent radio-over-fiber system for in-building distribution of UWB signals,” J. Lightwave Technol. 27(14), 2649–2657 (2009). [CrossRef]
  7. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008). [CrossRef]
  8. S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010). [CrossRef]
  9. M. Abtahi, M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “All-optical 500-Mb/s UWB transceiver: an experimental demonstration,” J. Lightwave Technol. 26(15), 2795–2802 (2008). [CrossRef]
  10. X. B. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009). [CrossRef] [PubMed]
  11. S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
  12. J. J. Dong, X. L. Zhang, J. Xu, D. X. Huang, S. N. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007). [CrossRef] [PubMed]
  13. S. L. Pan and J. P. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009). [CrossRef] [PubMed]
  14. S. G. Wang, H. W. Chen, M. Xin, M. H. Chen, and S. Z. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009). [CrossRef] [PubMed]
  15. X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18(4), 3643–3648 (2010). [CrossRef] [PubMed]
  16. Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007). [CrossRef] [PubMed]
  17. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007). [CrossRef]
  18. J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009). [CrossRef]
  19. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited