OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13700–13706

Terahertz meta-atoms coupled to a quantum well intersubband transition

D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13700-13706 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method of coupling free-space terahertz radiation to intersubband transitions in semiconductor quantum wells using an array of meta-atoms. Owing to the resonant nature of the interaction between metamaterial and incident light and the field enhancement in the vicinity of the metal structure, the coupling efficiency of this method is very high and the energy conversion ratio from in-plane to z field reaches values on the order of 50%. To identify the role of different aspects of this coupling, we have used a custom-made finite-difference time-domain code. The simulation results are supplemented by transmission measurements on modulation-doped GaAs/AlGaAs parabolic quantum wells which demonstrate efficient strong light-matter coupling between meta-atoms and intersubband transitions for normal incident electromagnetic waves.

© 2011 OSA

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: April 29, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 7, 2011
Published: June 30, 2011

D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, "Terahertz meta-atoms coupled to a quantum well intersubband transition," Opt. Express 19, 13700-13706 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Schlesinger, J. C. M. Hwang, and J. S. J. Allen, “Subband-Landau-level coupling in a two-dimensional electron gas,” Phys. Rev. Lett. 50, 2098–2101 (1983). [CrossRef]
  2. J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983). [CrossRef]
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 22, 553–556 (1994). [CrossRef]
  4. M. Helm, The Basic Physics of Intersubband Transitions , vol. 62 of Semiconductors and Semimetals (Academic Press, 2000).
  5. L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985). [CrossRef]
  6. B. F. Levine, R. J. Malik, J. Walker, K. K. Choi, C. G. Bethea, D. A. Kleinman, and J. M. Vandenberg, “Strong 8.2μm infrared intersubband absorption in doped GaAs/AlAs quantum well waveguides,” Appl. Phys. Lett. 50, 273–275 (1987). [CrossRef]
  7. D. Heitmann, J. P. Kotthaus, and E. G. Mohr, “Plasmon dispersion and intersubband resonance at high wavevectors in Si(100) inversion layers,” Solid State Commun. 44, 715–718 (1982). [CrossRef]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  9. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]
  10. N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Express 18, 24140–24151 (2010). [CrossRef] [PubMed]
  11. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102, 186402 (2009).
  12. M. Geiser, C. Walther, G. Scalari, M. Beck, M. Fischer, L. Nevou, and J. Faist, “Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators,” Appl. Phys. Lett. 97, 191107 (2010).
  13. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , 2nd ed. (Artech House, 2000).
  15. B. Engquist and A. Majda, “Absorbing boundary conditions for numerical simulation of waves,” Proc. Natl. Acad. Sci. USA 74, 1765–1766 (1977). [CrossRef] [PubMed]
  16. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  17. K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982). [CrossRef]
  18. R. W. Ziolkowski, “The incorporation of microscopical material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997). [CrossRef]
  19. B. Bidégaray, “Time discretizations for Maxwell-Bloch equations,” Numer. Methods Partial Differ. Eq. 19, 284–300 (2003). [CrossRef]
  20. R. Kersting, R. Bratschitsch, G. Strasser, K. Unterrainer, and J. N. Heyman, “Sampling a terahertz dipole transition with subcycle time resolution,” Opt. Lett. 25, 272–274 (2000). [CrossRef]
  21. R. Bratschitsch, T. Müller, R. Kersting, G. Strasser, and K. Unterrainer, “Coherent terahertz emission from opticall pumped intersubband plasmons in parabolic quantum wells,” Appl. Phys. Lett. 76, 3501–3503 (2000). [CrossRef]
  22. J. Ulrich, R. Zobl, K. Unterrainer, G. Strasser, E. Gornik, K. D. Maranowski, and A. C. Gossard, “Temperature dependence of far-infrared electroluminescence in parabolic quantum wells,” Appl. Phys. Lett. 74, 3158–3160 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited