OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13732–13737

Efficient silicon wire waveguide crossing with negligible loss and crosstalk

Andrei V. Tsarev  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 13732-13737 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple optical elements utilize crossing of channel optical waveguides. This paper introduces efficient silicon wire waveguide crossing by means of vertical coupling of tapered Si wire with upper polymer wide strip waveguide through a silica buffer. Numerical simulations by 3D FDTD prove that optimal structure of 70 µm length can provide 98% efficiency for through pass and 99.9% efficiency for cross pass, as well as negligible back reflection (−50 dB) and cross talk (−70 dB). Proposed waveguide crossing on thin silicon-on-insulator CMOS compatible structures could find multiple applications in Photonics.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: April 22, 2011
Revised Manuscript: June 14, 2011
Manuscript Accepted: June 17, 2011
Published: July 1, 2011

Andrei V. Tsarev, "Efficient silicon wire waveguide crossing with negligible loss and crosstalk," Opt. Express 19, 13732-13737 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett. 44(23), 1356–1357 (2008). [CrossRef]
  2. W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, “Design and characterization of microring reflectors with a waveguide crossing,” Opt. Lett. 35(17), 2901–2903 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-17-2901 . [CrossRef] [PubMed]
  3. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, Ltd, 2008).
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]
  5. P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19(20), 1583–1585 (2007). [CrossRef]
  6. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16146 . [CrossRef] [PubMed]
  7. D. Tanaka, Y. Ikuma, and H. Tsuda, “Low loss, small crosstalk offset crossing structure for large-scale planar lightwave circuits,” IEICE Electron. Express 6(7), 407–411 (2009). [CrossRef]
  8. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32(19), 2801–2803 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-19-2801 . [CrossRef] [PubMed]
  9. H. Chen and A. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photon. Technol. Lett. 18(21), 2260–2262 (2006). [CrossRef]
  10. C.-H. Chiu and C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010). [CrossRef]
  11. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett. 34(18), 2760–2762 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-18-2760 . [CrossRef] [PubMed]
  12. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004). [CrossRef]
  13. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  14. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2927 . [CrossRef] [PubMed]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-15-1302 . [CrossRef] [PubMed]
  16. D. Van Thourhout, G. Roelkens, R. Baets, W. Bogaerts, J. Brouckaert, P. P. P. Debackere, P. Dumon, S. Scheerlinck, J. Schrauwen, D. Taillaert, F. Van Laere, and J. Van Campenhout, “Coupling mechanisms for a heterogeneous silicon nanowire platform,” Semicond. Sci. Technol. 23(6), 064004 (2008). [CrossRef]
  17. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review of fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997). [CrossRef]
  18. J. K. Doylend and A. P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006). [CrossRef]
  19. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11682 . [CrossRef] [PubMed]
  20. C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) □lms produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002). [CrossRef]
  21. C. Reardon, A. Di Falco, K. Welna, and T. Krauss, “Integrated polymer microprisms for free space optical beam deflecting,” Opt. Express 17(5), 3424–3428 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3424 . [CrossRef] [PubMed]
  22. http://www.microchem.com/products/su_eight.htm , SU-8 3000 Data Sheet.
  23. www.rsoftdesign.com , Rsoft Photonic CAD Suite, ver. 8.0, single license (2007).
  24. Handbook of Optics, http://refractiveindex.info/?group=CRYSTALS&material=Si .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited