OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13750–13756

Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam

Kyoko Kitamura, Kyosuke Sakai, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13750-13756 (2011)
http://dx.doi.org/10.1364/OE.19.013750


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

© 2011 OSA

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: March 28, 2011
Revised Manuscript: June 8, 2011
Manuscript Accepted: June 19, 2011
Published: July 1, 2011

Citation
Kyoko Kitamura, Kyosuke Sakai, and Susumu Noda, "Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam," Opt. Express 19, 13750-13756 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  3. K. Yoshiki, K. Ryosuke, M. Hashimoto, and N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett. 32(12), 1680–1682 (2007). [CrossRef] [PubMed]
  4. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  5. K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007). [CrossRef]
  6. J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17(10), 8407–8416 (2009). [CrossRef] [PubMed]
  7. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239 (2004). [CrossRef]
  8. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005). [CrossRef] [PubMed]
  9. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  10. Y. Mushiake, K. Matsumura, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60(9), 1107–1109 (1972). [CrossRef]
  11. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006). [CrossRef] [PubMed]
  12. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946 (2006). [CrossRef] [PubMed]
  13. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999). [CrossRef]
  14. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001). [CrossRef] [PubMed]
  15. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004). [CrossRef] [PubMed]
  16. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010). [CrossRef] [PubMed]
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253(1274), 358–379 (1959). [CrossRef]
  18. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  19. M. Yokoyama and S. Noda, “Finite-Difference Time-Domain Simulation of Two-Dimensional Photonic Crystal Surface-Emitting Laser Having a Square-Lattice Slab Structure,” IEICE Trans. Electron . 87-C, 386 (2004).
  20. J. R. Wait, “Exact surface impedance for a cylindrical conductor,” Electron. Lett. 15(20), 659 (1979). [CrossRef]
  21. S. Kellali, B. Jecko, and A. Reineix, “Implementation of a surface impedance formalism at oblique incidence in FDTD method,” IEEE Trans. 35, 347 (1993).
  22. K. Şendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited