OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13770–13778

A quantum pulse gate based on spectrally engineered sum frequency generation

Andreas Eckstein, Benjamin Brecht, and Christine Silberhorn  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 13770-13778 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the concept of a quantum pulse gate (QPG), a method for accessing the intrinsic broadband spectral mode structure of ultrafast quantum states of light. This mode structure can now be harnessed for applications in quantum information processing. We propose an implementation in a PPLN waveguide, based on spectrally engineered sum frequency generation (SFG). It allows us to pick well-defined spectral broadband modes from an ultrafast multi-mode state for interconversion to a broadband mode at another frequency. By pulse-shaping the bright SFG pump beam, different orthogonal broadband modes can be addressed individually and extracted with high fidelity.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Quantum Optics

Original Manuscript: April 8, 2011
Revised Manuscript: May 19, 2011
Manuscript Accepted: June 13, 2011
Published: July 5, 2011

Andreas Eckstein, Benjamin Brecht, and Christine Silberhorn, "A quantum pulse gate based on spectrally engineered sum frequency generation," Opt. Express 19, 13770-13778 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96, 161102 (2010). [CrossRef]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001). [CrossRef] [PubMed]
  3. U. M. Titulaer and R. J. Glauber, “Density operators for coherent fields,” Phys. Rev. 145, 1041–1050 (1966). [CrossRef]
  4. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000). [CrossRef] [PubMed]
  5. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004). [CrossRef] [PubMed]
  6. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 ţm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004). [CrossRef] [PubMed]
  7. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  8. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]
  9. A. P. VanDevender and P. G. Kwiat, “High-speed transparent switch via frequency upconversion,” Opt. Express 15, 4677–4683 (2007). [CrossRef] [PubMed]
  10. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101, 153602 (2008). [CrossRef] [PubMed]
  11. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008). [CrossRef] [PubMed]
  12. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010). [CrossRef] [PubMed]
  13. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001). [CrossRef]
  14. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 0611019 (2005).
  15. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  16. M. Raymer, S. van Enk, C. McKinstrie, and H. McGuinness, “Interference of two photons of different color,” Opt. Comm. 283, 747–752 (2010). [CrossRef]
  17. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005). [CrossRef] [PubMed]
  18. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011). [CrossRef] [PubMed]
  19. C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. D. Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011). [CrossRef] [PubMed]
  20. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011). [CrossRef] [PubMed]
  21. M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maître, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2003). [CrossRef]
  22. P. P. Rohde, W. Mauerer, and C. Silberhorn, “Spectral structure and decompositions of optical states, and their applications,” New J. Phys. 9, 010091 (2007). [CrossRef]
  23. A. M. Branczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010). [CrossRef]
  24. K. Laiho, K. N. Cassemiro, and C. Silberhorn, “Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion,” Opt. Express 17, 22823–22837 (2009). [CrossRef]
  25. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983). [CrossRef] [PubMed]
  26. B. L. Schumaker, “Noise in homodyne detection,” Opt. Lett. 9, 189–191 (1984). [CrossRef] [PubMed]
  27. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  28. N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, and P. K. Lam, “A quantum laser pointer,” Science 301, 940–943 (2003). [CrossRef] [PubMed]
  29. M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett. 98, 083602 (2007). [CrossRef] [PubMed]
  30. T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Synthesis and analysis of entangled photonic qubits in spatial-parity space,” Phys. Rev. Lett. 99, 250502 (2007). [CrossRef]
  31. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-ii down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997). [CrossRef]
  32. S. Prasad, M. O. Scully, and W. Martienssen, “A quantum description of the beam splitter,” Opt. Comm. 62, 139–145 (1987). [CrossRef]
  33. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006). [CrossRef]
  34. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011). [CrossRef] [PubMed]
  35. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited