OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13806–13811

Large lateral photovoltaic effect observed in nano Al-doped ZnO films

Jing Lu and Hui Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13806-13811 (2011)
http://dx.doi.org/10.1364/OE.19.013806


View Full Text Article

Enhanced HTML    Acrobat PDF (1517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Zinc oxide (ZnO), including a variety of metal-doped ZnO, as one kind of most important photoelectric materials, has been widely investigated and received enormous attention for a series of applications. In this work, we report a new finding which we call as lateral photovoltaic effect (LPE) in a nano Al-doped ZnO (ZAO) film based on ZAO/SiO2/Si homo-heterostructure. This large and stable LPE observed in ZAO is an important supplement to the existing ZnO properties. In addition, all data and analyses demonstrate ZAO film can also be a good candidate for new type position-sensitive detector (PSD) devices.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.5350) Detectors : Photovoltaic
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Detectors

History
Original Manuscript: May 9, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 7, 2011
Published: July 5, 2011

Citation
Jing Lu and Hui Wang, "Large lateral photovoltaic effect observed in nano Al-doped ZnO films," Opt. Express 19, 13806-13811 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Service, “Materials science: will UV lasers beat the blues?” Science 276(5314), 895 (1997). [CrossRef]
  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000). [CrossRef] [PubMed]
  3. S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” Appl. Phys. Lett. 75(18), 2761–2763 (1999). [CrossRef]
  4. I.-S. Jeong, J. H. Kim, and S. Im, “Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure,” Appl. Phys. Lett. 83(14), 2946–2948 (2003). [CrossRef]
  5. S. Muthukumar, C. R. Gorla, N. W. Emanetoglu, S. Liang, and Y. Lu, “Control of morphology and orientation of ZnO thin films grown on SiO2/Si substrates,” J. Cryst. Growth 225(2-4), 197–201 (2001). [CrossRef]
  6. J. Q. Xu, Q. Y. Pan, Y. A. Shun, and Z. Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor,” Sens. Actuators B Chem. 66(1-3), 277–279 (2000). [CrossRef]
  7. C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett. 85(5), 1012–1015 (2000). [CrossRef] [PubMed]
  8. S. Kohiki, M. Nishitani, T. Wada, and T. Hirao, “Enhanced conductivity of zinc oxide thin films by ion implantation of hydrogen atoms,” Appl. Phys. Lett. 64(21), 2876–2878 (1994). [CrossRef]
  9. S.-M. Park, T. Ikegami, and K. Ebihara, “Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition,” Thin Solid Films 513(1-2), 90–94 (2006). [CrossRef]
  10. Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003). [CrossRef] [PubMed]
  11. J. Hu and R. G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells,” Sol. Cells 30(1-4), 437–450 (1991). [CrossRef]
  12. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schäfer, and F. Henneberger, “Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy,” Appl. Phys. Lett. 89(20), 201907 (2006). [CrossRef]
  13. S. Blumstengel, S. Sadofev, J. Puls, and F. Henneberger, “An inorganic/organic semiconductor “sandwich” structure grown by molecular beam epitaxy,” Adv. Mater. 21(47), 4850–4853 (2009). [CrossRef] [PubMed]
  14. B. S. Chun, H. C. Wu, M. Abid, I. C. Chu, S. Serrano-Guisan, I. V. Shvets, and D. S. Choi, “The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films,” Appl. Phys. Lett. 97(8), 082109–082111 (2010). [CrossRef]
  15. O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett. 90(25), 252108 (2007). [CrossRef]
  16. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003). [CrossRef]
  17. W. Schottky, “Uber den entstehungsort der photoelektronen in kupfer-kupferoxydull-photozellen,” Phys. Z. 31, 913–925 (1930).
  18. J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474–483 (1957).
  19. R. H. Willens, “Photoelectronic and electronic properties of Ti/Si amorphous superlattices,” Appl. Phys. Lett. 49(11), 663–665 (1986). [CrossRef]
  20. N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989). [CrossRef]
  21. J. Henry and J. Livingstone, “A comparative study of position-sensitive detectors based on Schottky barrier crystalline and amorphous silicon structures,” J. Mater. Sci. Mater. Electron. 12(7), 387–393 (2001). [CrossRef]
  22. K. J. Jin, H.-B. Zhao, H.-B. Lu, L. Liao, and G.-Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007). [CrossRef]
  23. J. Henry and J. Livingstone, “Electron-beam fabricated titanium and indium tin oxide position-sensitive detectors,” Int. J. Electron. 88(10), 1057–1065 (2001). [CrossRef]
  24. S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures,” Opt. Express 16(6), 3798–3806 (2008). [CrossRef] [PubMed]
  25. C. Q. Yu, H. Wang, and Y. X. Xia, “Giant lateral photovoltaic effect observed in TiO2 dusted metal-semiconductor structure of Ti/TiO2/Si,” Appl. Phys. Lett. 95(14), 141112 (2009). [CrossRef]
  26. J. I. Pankove, “Photovoltaic effect at a Schottky barrier,” Opt. Processes Semicond. 14, 314–321 (1971).
  27. H. Niu, T. Matsuda, H. Sadamatsu, and M. Takai, “Application of lateral photovoltaic effect to the measurement of the physical quantities of P-N junctions-sheet resistivity and junction conductance of N2+ implanted Si,” Jpn. J. Appl. Phys. 12, 4 (1976).
  28. L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu(2)O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010). [CrossRef] [PubMed]
  29. R. Martins and E. Fortunato, “Role of the resistive layer on the performances of 2D a-Si: H thin film position sensitive detectors,” Thin Solid Films 337(1-2), 158–162 (1999). [CrossRef]
  30. E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2-3), 135–142 (1995). [CrossRef] [PubMed]
  31. C. Q. Yu, H. Wang, and Y. X. Xia, “Giant lateral photovoltaic effect observed in TiO2 dusted metal-semiconductor structure of Ti/TiO2/Si,” Appl. Phys. Lett. 95, 3506–3508 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited