OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13892–13898

Room-temperature high-Q channel-waveguide surface plasmon nanocavity

Ju-Hyung Kang, Hong-Gyu Park, and Soon-Hong Kwon  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13892-13898 (2011)
http://dx.doi.org/10.1364/OE.19.013892


View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low-loss plasmonic cavity is proposed comprising of channel waveguides of different widths. Numerical simulations show that surface plasmons are strongly confined by a mode-gap mechanism in the cavity that has a mode volume of 0.0040 (λ/n)3 and a room temperature quality (Q) factor of 125. The introduction of low-index material can enhance the room temperature Q factor by 2.5 times to 350, while maintaining the mode confinement of 0.040 (λ/n)3– well below the wavelength-scale in free space. The suppression of losses from radiation and metallic absorption in the cavity would allow room temperature plasmonic laser operation, and constitutes significant progress towards practical coherent light sources for such lasers.

© 2011 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 22, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 21, 2011
Published: July 6, 2011

Citation
Ju-Hyung Kang, Hong-Gyu Park, and Soon-Hong Kwon, "Room-temperature high-Q channel-waveguide surface plasmon nanocavity," Opt. Express 19, 13892-13898 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  2. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  3. D. Englund, H. Altug, B. Ellis, and J. Vuckovic, “Ultrafast photonic crystal lasers,” Laser Photon. Rev. 2(4), 264–274 (2008). [CrossRef]
  4. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  5. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). [CrossRef]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  7. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]
  8. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  9. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  11. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  12. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003). [CrossRef] [PubMed]
  13. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96(25), 251101 (2010). [CrossRef]
  14. M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009). [CrossRef] [PubMed]
  15. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011). [CrossRef] [PubMed]
  16. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010). [CrossRef] [PubMed]
  17. Our SPP cavity can be fabricated using the following processes: first, the cavity structure is defined by electron-beam lithography and dry etching process in InGaAsP/InP wafer. After the encapsulation of a low-index dielectric layer such as SiO2 on the structure, silver is deposited by an electron-beam evaporator. The sample is flip-bonded to a silicon substrate by an epoxy. The InP substrate is removed by wet etching process, resulting in the plasmonic channel-waveguide cavity.
  18. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  19. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  20. R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited