OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13949–13956

Directly produced three-color entanglement by quasi-phase-matched third-harmonic generation

Y. B. Yu, H. J. Wang, M. Xiao, and S. N. Zhu  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 13949-13956 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new scheme is presented to directly produce fundamental, second-, and third-harmonic three-color continuous-variable (CV) entangled beams by cascaded quasi-phase-matched third-harmonic generation (THG) in an optical cavity. THG can be achieved with high efficiency through a coupled sum-frequency process between the second-harmonic and the fundamental fields. It is demonstrated that the three beams (fundamental, second-, and third-harmonic fields) are entangled with each other according to the CV entanglement criterion. In this scheme, only one crystal and one pump field can generate three-color CV entangled beams separated by an octave in frequency through quasi-phase-matched cascaded nonlinear process, which may be very useful for the applications in quantum communication and computation networks.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Nonlinear Optics

Original Manuscript: February 7, 2011
Revised Manuscript: March 18, 2011
Manuscript Accepted: June 17, 2011
Published: July 7, 2011

Y. B. Yu, H. J. Wang, M. Xiao, and S. N. Zhu, "Directly produced three-color entanglement by quasi-phase-matched third-harmonic generation," Opt. Express 19, 13949-13956 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef] [PubMed]
  2. M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60, 2731–2733 (1988). [CrossRef] [PubMed]
  3. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992). [CrossRef] [PubMed]
  4. A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P. Nussenzveig, “Generation of bright two-color continuous variable entanglement,” Phys. Rev. Lett. 95, 243603 (2005). [CrossRef] [PubMed]
  5. A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, “Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator,” Phys. Rev. Lett. 97, 140504 (2006). [CrossRef] [PubMed]
  6. A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823–826 (2009). [CrossRef] [PubMed]
  7. P. Lodahl, “Einstein-Podolsky-Rosen correlations in second-harmonic generation,” Phys. Rev. A 68, 023806 (2003). [CrossRef]
  8. M. K. Olsen, “Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation,” Phys. Rev. A 70, 035801 (2004). [CrossRef]
  9. N. B. Grosse, W. P. Bowen, K. McKenzie, and P. K. Lam, “Harmonic entanglement with second-order nonlinearity,” Phys. Rev. Lett. 96, 063601 (2006). [CrossRef] [PubMed]
  10. N. B. Grosse, S. Assad, M. Mehmet, R. Schnabel, T. Symul, and P. K. Lam, “Observation of entanglement between two light beams spanning an octave in optical frequency,” Phys. Rev. Lett. 100, 243601 (2008). [CrossRef] [PubMed]
  11. S. Q. Zhai, R. G. Yang, D. H. Fan, J. Guo, K. Liu, J. X. Zhang, and J. R. Gao, “Tripartite entanglement from the cavity with second-order harmonic generation,” Phys. Rev. A 78, 014302 (2008). [CrossRef]
  12. S. Q. Zhai, R. G. Yang, K. Liu, H. L. Zhang, J. X. Zhang, and J. R. Gao, “Bright two-color tripartite entanglement with second harmonic generation,” Opt. Express 17, 9851–9857 (2009). [CrossRef] [PubMed]
  13. R. G. Yang, S. Q. Zhai, K. Liu, J. X. Zhang, and J. R. Gao, “Generation of multicolored tripartite entanglement by frequency doubling in a two-port resonator,” J. Opt. Soc. Am. B 27, 2721–2726 (2010). [CrossRef]
  14. J. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  15. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997). [CrossRef]
  16. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  17. C. W. Gardiner, Quantum Noise (Springer, 1991).
  18. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  19. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984). [CrossRef]
  20. R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000). [CrossRef] [PubMed]
  21. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996). [CrossRef] [PubMed]
  22. M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A 223, 1–8 (1996). [CrossRef]
  23. R. F. Werner and M. M. Wolf, “Bound entangled Gaussian states,” Phys. Rev. Lett. 86, 3658–3661 (2001). [CrossRef] [PubMed]
  24. G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001). [CrossRef]
  25. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  26. A. Serafini, G. Adesso, and F. Illuminati, “Unitarily localizable entanglement of Gaussian states,” Phys. Rev. A 71, 032349 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited