OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14051–14059

Scalable ultrahigh-speed optical transmultiplexer using a time lens

Keith G. Petrillo and Mark A. Foster  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14051-14059 (2011)
http://dx.doi.org/10.1364/OE.19.014051


View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a scalable approach to optical time division multiplexing using an all-optical transmultiplexer incorporating a time lens. With simply a single nonlinear device we numerically demonstrate direct conversion from time-division multiplexing (TDM) to wavelength division multiplexing (WDM) with an industry standard 100-GHz channel spacing. Data rates at 1.28 Tb/s are realized in simulation. Additionally, various pump shapes are investigated to minimize distortions and reverse operation of the device (WDM to TDM conversion) is shown.

© 2011 OSA

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 26, 2011
Revised Manuscript: June 24, 2011
Manuscript Accepted: June 27, 2011
Published: July 7, 2011

Citation
Keith G. Petrillo and Mark A. Foster, "Scalable ultrahigh-speed optical transmultiplexer using a time lens," Opt. Express 19, 14051-14059 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14051


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60km using 400fs pulse train and walk-off free dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998). [CrossRef]
  2. T. Morioka, “Ultrafast and wideband all-optical processing technologies towards flexible photonic networks,” Opt. Rev. 11(3), 153–161 (2004). [CrossRef]
  3. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006). [CrossRef]
  4. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009). [CrossRef]
  5. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1438 . [CrossRef] [PubMed]
  6. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,n” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  7. T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, “Error-free 500Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses,” Electron. Lett. 32(9), 833–834 (1996). [CrossRef]
  8. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007). [CrossRef]
  9. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2182 . [CrossRef] [PubMed]
  10. F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3905 . [CrossRef] [PubMed]
  11. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 . [CrossRef] [PubMed]
  12. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011). [CrossRef]
  13. M. A. Foster, “High-speed optical signal processing using temporal imaging,” presented at the 6th APS/DLS New Laser Scientist Conference, Rochester, New York, USA, 28–29 Oct. 2010.
  14. K. G. Petrillo and M. A. Foster, “Scalable 1.28-Tb/s transmultiplexer using a time-lens,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI77.
  15. H. C. H. Mulvad, E. Palushani, M. Galili, J. Xu, H. Hu, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “OTDM-WDM conversion based on time-domain optical Fourier transformation with spectral compression,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThN2.
  16. L. K. Oxenløwe, “Ultra-fast optical signal processing using optical time lenses and highly nonlinear silicon nanowires,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThA5.
  17. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]
  18. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006). [CrossRef]
  19. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994). [CrossRef]
  20. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  21. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett. 24(11), 783–785 (1999). [CrossRef] [PubMed]
  22. M. Nakazawa and T. Hirooka, “Distortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses,” J. Opt. Soc. Am. B 22(9), 1842–1855 (2005). [CrossRef]
  23. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009). [CrossRef]
  24. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4324 . [CrossRef] [PubMed]
  25. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-17-7-5691 . [CrossRef] [PubMed]
  26. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20605 . [CrossRef] [PubMed]
  27. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008). [CrossRef] [PubMed]
  28. J. P. R. Lacey, M. V. Chan, R. S. Tucker, A. J. Lowery, and M. A. Summerfield, “All-optical WDM to TDM transmultiplexer,” Electron. Lett. 30(19), 1612–1613 (1994). [CrossRef]
  29. T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994). [CrossRef]
  30. K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett. 32(21), 1989–1990 (1996). [CrossRef]
  31. K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10(6), 890–892 (1998). [CrossRef]
  32. H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four-wave mixing with supercontinuum light source,” Electron. Lett. 37, 640–641 (2001). [CrossRef]
  33. K. Uchiyama, H. Takara, K. Mori, and T. Morioka, “160 Gbit/s all-optical time-division demultiplexing utilizing modified multiple-output OTDM demultiplexer (MOXIC),” Electron. Lett. 38(20), 1190–1191 (2002). [CrossRef]
  34. P. J. Almeida, P. Petropoulos, F. Parmigiani, M. Ibsen, and D. J. Richardson, “OTDM add-drop multiplexer based on time-frequency signal processing,” J. Lightwave Technol. 24(7), 2720–2732 (2006). [CrossRef]
  35. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18(10), 10282–10288 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10282 . [CrossRef] [PubMed]
  36. C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Optical Demultiplexing of 320 Gb/s to 8 x 40 Gb/s in Single Parametric Gate,” J. Lightwave Technol. 28(4), 434–442 (2010). [CrossRef]
  37. X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-Speed Optical WDM-to-TDM Conversion Using Fiber Nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010). [CrossRef]
  38. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  39. V. Ta’eed, M. D. Pelusi, B. J. Eggleton, D.-Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As(2)S(3) planar waveguides,” Opt. Express 15(23), 15047–15052 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-15-23-15047 . [CrossRef] [PubMed]
  40. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-1904 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited