OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14130–14136

Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14130-14136 (2011)
http://dx.doi.org/10.1364/OE.19.014130


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 16-channel 200GHz arrayed-waveguide grating (AWG) (de)-multiplexer is demonstrated experimentally by utilizing Si3N4 buried optical waveguides, which have 50nm-thick Si3N4 cores and a 15μm-thick SiO2 cladding. The structure with an ultra-thin core layer helps to reduce the scattering due to the sidewall roughness and consequently shows very low loss of about 0.4~0.8dB/m. When using this type of optical waveguide for an AWG (de)multiplexer, there is no problem associated with gap refill using the upper-cladding material even when choosing a small (e.g., 1.0 μm) gap between adjacent arrayed waveguides, which helps to reduce the transition loss between the FPR (free-propagation region) and the arrayed waveguides. Therefore, the demonstrated AWG (de)multiplexer based on the present Si3N4 buried optical waveguides has a low on-chip loss. The fabricated AWG (de)multiplexer is characterized in two wavelength ranges around 1310nm and 1550nm, respectively. It shows that the crosstalk from adjacent and non-adjacent channels are about –30dB, and –40dB, respectively, at the wavelength range of 1310nm. The Si3N4 AWG (de)multiplexer has a temperature dependence of about 0.011nm/°C, which is close to that of a pure SiO2 AWG device.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

History
Original Manuscript: May 18, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 7, 2011
Published: July 8, 2011

Citation
Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers, "Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides," Opt. Express 19, 14130-14136 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14130


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006). [CrossRef]
  2. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002). [CrossRef]
  3. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A. 10(4), 044011–044018 (2008). [CrossRef]
  4. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007). [CrossRef] [PubMed]
  5. R. Adar, M. R. Serbin, and V. Mizrahi, “Lss-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994). [CrossRef]
  6. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000). [CrossRef]
  7. M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996). [CrossRef]
  8. B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).
  9. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004). [CrossRef]
  10. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997). [CrossRef]
  11. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  12. D. Dai, X. Fu, Y. Shi, and S. He, “Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors,” Opt. Lett. 35(15), 2594–2596 (2010). [CrossRef] [PubMed]
  13. C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).
  14. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010). [CrossRef]
  15. M. M. Spühler, B. J. Offrein, G. Bona, R. Germann, I. Massarek, and D. Erni, “A very short planar silica spot-size converter using a nonperiodic segmented waveguide,” J. Lightwave Technol. 16(9), 1680–1685 (1998). [CrossRef]
  16. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011). [CrossRef] [PubMed]
  17. M. C. Tien, J. F. Bauters, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010). [CrossRef] [PubMed]
  18. Y. C. Zhu, F. H. Groen, D. H. P. Maat, Y. S. Oei, J. Romijin, and I. Moerman, “A compact PHASAR with low central channel loss,” in Proc. Euro. Conf. Integrated Optics ’99, Turin, Italy, Apr. 14–16, 219–222 (1999).
  19. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010). [CrossRef] [PubMed]
  20. Y. Sakamaki, S. Kamei, T. Hashimoto, T. Kitoh, and H. Takahashi, “Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method,” J. Lightwave Technol. 27(24), 5710–5715 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited