OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14137–14144

A novel encoded-phase technique for phase measuring profilometry

Yuankun Liu, Xianyu Su, and Qican Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14137-14144 (2011)
http://dx.doi.org/10.1364/OE.19.014137


View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3-D) shape measurement using a novel encoded-phase grating is proposed. The projected sinusoidal fringe patterns are designed with wrapped and encoded phase instead of monotonic and unwrapped phase. Phase values of the projected fringes on the surface are evaluated by phase-shift technique. The absolute phase is then restored with reference to the encoded information, which is extracted from the differential of the wrapped phase. To solve the phase errors at some phase-jump areas, Hilbert transform is employed. By embedding the encoded information in the wrapped phase, there is no extra pattern that needs to be projected. The experimental results identify its feasibility and show the possibility to measure the spatially isolated objects. It will be promising to analyze dynamic objects.

© 2011 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 26, 2011
Revised Manuscript: June 21, 2011
Manuscript Accepted: June 23, 2011
Published: July 8, 2011

Citation
Yuankun Liu, Xianyu Su, and Qican Zhang, "A novel encoded-phase technique for phase measuring profilometry," Opt. Express 19, 14137-14144 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000). [CrossRef]
  2. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010). [CrossRef]
  3. Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3110 . [CrossRef] [PubMed]
  4. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42(3), 245–261 (2004). [CrossRef]
  5. T. R. Judge and P. J. Bryanston-Cross, “Review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21(4), 199–239 (1994). [CrossRef]
  6. H. Zhao, W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement of three-dimensional object shapes,” Appl. Opt. 33(20), 4497–4500 (1994). [CrossRef] [PubMed]
  7. W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996). [CrossRef]
  8. H. O. Saldner and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36(13), 2770–2775 (1997). [CrossRef] [PubMed]
  9. Y. Hao, Y. Zhao, and D. Li, “Multifrequency grating projection profilometry based on the nonlinear excess fraction method,” Appl. Opt. 38(19), 4106–4110 (1999). [CrossRef] [PubMed]
  10. E. B. Li, X. Peng, J. Xi, J. F. Chicharo, J. Q. Yao, and D. W. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry,” Opt. Express 13(5), 1561–1569 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-5-1561 . [CrossRef] [PubMed]
  11. Y. Li, C. F. Zhao, Y. X. Qian, H. Wang, and H. Zh. Jin, “High-speed and dense three-dimensional surface acquisition using defocused binary patterns for spatially isolated objects,” Opt. Express 18(21), 21628–21635 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21628 . [CrossRef] [PubMed]
  12. S. Zhang, “Flexible 3D shape measurement using projector defocusing: extended measurement range,” Opt. Lett. 35(7), 934–936 (2010). [CrossRef] [PubMed]
  13. W.-H. Su, “Color-encoded fringe projection for 3D shape measurements,” Opt. Express 15(20), 13167–13181 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13167 . [CrossRef] [PubMed]
  14. L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett. 34(15), 2363–2365 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited