OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14145–14151

Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission

Ming-Hua Mao, Hao-Che Chien, Jay-Zway Hong, and Chih-Yi Cheng  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14145-14151 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated current-injection InGaAs quantum-dot microdisk lasers with benzocyclobutene cladding in this work. The microdisk pedestal diameter is carefully designed to facilitate carrier injection and modal control. With this structure, low threshold current of 0.45 mA is achieved at room temperature from a device of 6.5 μm in diameter with single-mode emission from quantum-dot ground states. The negative characteristic temperature T0 of threshold current is observed between 80 K and 150 K. The transition temperature from negative T0 to positive T0 is 150 K which is higher than that of the edge-emitting lasers fabricated from the same wafer. This phenomenon indicates the lower loss level of our microdisk cavities. These microdisk lasers also show positive T0 significantly higher than that of the edge-emitting lasers from the same wafer.

© 2011 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 19, 2011
Manuscript Accepted: June 26, 2011
Published: July 8, 2011

Ming-Hua Mao, Hao-Che Chien, Jay-Zway Hong, and Chih-Yi Cheng, "Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission," Opt. Express 19, 14145-14151 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003). [CrossRef]
  2. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004). [CrossRef]
  3. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  4. L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82(3), 319–321 (2003). [CrossRef]
  5. R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002). [CrossRef]
  6. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999). [CrossRef]
  7. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007). [CrossRef]
  8. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  9. A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997). [CrossRef]
  10. D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009). [CrossRef]
  11. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005). [CrossRef]
  12. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001). [CrossRef] [PubMed]
  13. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998). [CrossRef]
  14. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited