OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14182–14187

Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes

Lei Wang, Cimang Lu, Jianing Lu, Lei Liu, Ningyang Liu, Yujie Chen, Yanfeng Zhang, Erdan Gu, and Xiaodong Hu  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14182-14187 (2011)
http://dx.doi.org/10.1364/OE.19.014182


View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the self-consistent solution of Schrödinger-Poisson equations was realized to estimate the radiative recombination coefficient and the lifetime of a single blue light InGaN/GaN quantum well (QW). The results revealed that the recombination rate was not in proportion to the total injected carriers, and thus the Bnp item was not an accurate method to analyze the recombination process. Carrier screening and band filling effects were also investigated, and an extended Shockley-Read-Hall coefficient A(kt ) with a statistical weight factor due to the carrier distributions in real and phase space of the QW was proposed to estimate the total nonradative current loss including carrier nonradiative recombination, leakage and spillover to explain the efficiency droop behaviors. Without consideration of the Auger recombination, the blue shift of the electroluminescence spectrum, light output power and efficiency droop curves as a function of injected current were all investigated and compared with the experimental data of a high brightness blue light InGaN/GaN multiple QWs light emitting diode to confirm the reliability of our theoretical hypothesis.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

History
Original Manuscript: April 26, 2011
Revised Manuscript: June 15, 2011
Manuscript Accepted: June 17, 2011
Published: July 11, 2011

Citation
Lei Wang, Cimang Lu, Jianing Lu, Lei Liu, Ningyang Liu, Yujie Chen, Yanfeng Zhang, Erdan Gu, and Xiaodong Hu, "Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes," Opt. Express 19, 14182-14187 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(02), 101–107 (2009). [CrossRef]
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  3. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007). [CrossRef]
  4. K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009). [CrossRef]
  5. N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007). [CrossRef]
  6. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008). [CrossRef]
  7. F. Bertazzi, M. Goano, and E. Bellotti, “A numerical study of Auger recombination in bulk InGaN,” Appl. Phys. Lett. 97(23), 231118 (2010). [CrossRef]
  8. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96(22), 221106 (2010). [CrossRef]
  9. Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94(11), 111109 (2009). [CrossRef]
  10. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007). [CrossRef]
  11. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, “Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes,” Appl. Phys. Lett. 96(13), 133502 (2010). [CrossRef]
  12. Ü. Özgür, H. Liu, X. Li, X. Ni, and H. Morkoç, “GaN-based light emitting diodes: efficiency at high injection levels,” Proc. IEEE 98(7), 1180–1196 (2010). [CrossRef]
  13. Y. Yang, X. A. Cao, and C. H. Yan, “Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates,” Appl. Phys. Lett. 94(4), 041117 (2009). [CrossRef]
  14. B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007). [CrossRef]
  15. I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, M. J. Kappers, and C. J. Humphreys, “Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480 nm,” Appl. Phys. Lett. 82(17), 2755 (2003). [CrossRef]
  16. A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, “Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 79(22), 3723 (2001). [CrossRef]
  17. K. S. Kim, J. H. Kim, S. J. Jung, Y. J. Park, and S. N. Cho, “Stable temperature characteristics of InGaN blue light emitting diodes using AlGaN/GaN/InGaN superlattices as electron blocking layer,” Appl. Phys. Lett. 96(9), 091104 (2010). [CrossRef]
  18. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(23), 231123 (2009). [CrossRef]
  19. J. H. Son and J.-L. Lee, “Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes,” Opt. Express 18(6), 5466–5471 (2010). [CrossRef] [PubMed]
  20. S. L. Chuang and C. S. Chang, “k•p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996). [CrossRef]
  21. L. Wang, R. Li, Z. Yang, D. Li, T. Yu, N. Liu, L. Liu, W. Chen, and X. Hu, “High spontaneous emission rate asymmetrically graded 480nm InGaN/GaN quantum well light-emitting diodes,” Appl. Phys. Lett. 95(21), 211104 (2009). [CrossRef]
  22. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008). [CrossRef]
  23. F. Bernardini and V. Fiorentini, “Nonlinear behavior of spontaneous and piezoelectric polarization in III–V nitride alloys,” Phys. Status Solidi A 190(1), 65–73 (2002). [CrossRef]
  24. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency,” Phys. Rev. Lett. 95(12), 127402 (2005). [CrossRef] [PubMed]
  25. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207(10), 2217–2225 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited