OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14249–14259

Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source

H. Kumano, K. Matsuda, S. Ekuni, H. Sasakura, and I. Suemune  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14249-14259 (2011)
http://dx.doi.org/10.1364/OE.19.014249


View Full Text Article

Enhanced HTML    Acrobat PDF (1443 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally prepare bi-photon mixed states in polarization employing an entangled-classical hybrid photon emitter which can properly model solid-state entangled photon sources with uncorrelated background photons. Polarization-uncorrelated photon pairs in totally mixed (TM) states are embodied with classical thermal radiation, while the polarization-entangled ones in a Bell state are generated by conventional parametric down conversion. The bi-photon states generated from the hybrid photon emitter are characterized in terms of a linear entropy–tangle plane, which reveals the formation of two-qubit Werner states. We also propose a direct way for evaluating the Werner states by means of minimal coincidence counts measurements. This simple method can be widely applicable in examining the bi-photon states from solid-state entangled photon sources, in which the polarization-entangled photon pairs have temporal correlation while the background photons in the TM states do not.

© 2011 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 18, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 22, 2011
Published: July 11, 2011

Citation
H. Kumano, K. Matsuda, S. Ekuni, H. Sasakura, and I. Suemune, "Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source," Opt. Express 19, 14249-14259 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14249


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Qnautum Information (Cambridge University Press, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  4. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  5. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995). [CrossRef] [PubMed]
  6. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996). [CrossRef] [PubMed]
  7. P. Michler, Single Semiconductor Quantum Dots (Springer, 2009). [CrossRef]
  8. H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006). [CrossRef]
  9. Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008). [CrossRef]
  10. Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).
  11. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006). [CrossRef] [PubMed]
  12. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006). [CrossRef] [PubMed]
  13. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007). [CrossRef]
  14. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010). [CrossRef]
  15. R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989). [CrossRef] [PubMed]
  16. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001). [CrossRef]
  17. M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006). [CrossRef]
  18. G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007). [CrossRef]
  19. Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002). [CrossRef]
  20. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003). [CrossRef] [PubMed]
  21. M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004). [CrossRef] [PubMed]
  22. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000). [CrossRef] [PubMed]
  23. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000). [CrossRef] [PubMed]
  24. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001). [CrossRef] [PubMed]
  25. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]
  26. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  27. J. S. Bell, Physics (1965), Vol. 1, p. 165.
  28. R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009). [CrossRef] [PubMed]
  29. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  30. S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000). [CrossRef]
  31. C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004). [CrossRef]
  32. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef] [PubMed]
  33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  34. B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000). [CrossRef]
  35. R. Loudon, The Quantum Theory of Light , 3rd ed. (Oxford University Press, 2000), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited