OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14260–14267

Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration

Kamil Boratay Alici, Adil Burak Turhan, Costas M. Soukoulis, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14260-14267 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed, fabricated, and experimentally characterized thin absorbers utilizing both electrical and magnetic impedance matching at the near-infrared regime. The absorbers consist of four main layers: a metal back plate, dielectric spacer, and two artificial layers. One of the artificial layers provides electrical resonance and the other one provides magnetic resonance yielding a polarization independent broadband perfect absorption. The structure response remains similar for the wide angle of incidence due to the sub-wavelength unit cell size of the constituting artificial layers. The design is useful for applications such as thermal photovoltaics, sensors, and camouflage.

© 2011 OSA

OCIS Codes
(300.1030) Spectroscopy : Absorption
(350.6050) Other areas of optics : Solar energy
(160.3918) Materials : Metamaterials
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:

Original Manuscript: May 18, 2011
Revised Manuscript: July 1, 2011
Manuscript Accepted: July 1, 2011
Published: July 11, 2011

Kamil Boratay Alici, Adil Burak Turhan, Costas M. Soukoulis, and Ekmel Ozbay, "Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration," Opt. Express 19, 14260-14267 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004). [CrossRef]
  4. K. Aydin, I. Bulu, and E. Ozbay, “Focusing of electromagnetic waves by a left-handed metamaterial flat lens,” Opt. Express 13(22), 8753–8759 (2005). [CrossRef] [PubMed]
  5. Y. Chenga, H. Yanga, Z. Chengb, and B. Xiaoc, “A planar polarization-insensitive metamaterial absorber,” Photon. Nanostructures 9(1), 8–14 (2011). [CrossRef]
  6. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Experimental verification of metamaterial based subwavelength microwave absorbers,” J. Appl. Phys. 108(8), 083113 (2010). [CrossRef]
  7. B. Wang, Th. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009). [CrossRef]
  8. H. Mosallaei and K. Sarabandi, “A one-layer ultra-thin meta-surface absorber,” Antennas Propag. Soc. Int. Symp., 2005 IEEE; IEEE: Los Alamitos, CA 1B, 615–618 (2005).
  9. F. Bilotti, A. Alu, N. Engheta, and L. Vegni, “Metamaterial sub-wavelength absorbers,” Proceedings of the 2005 Nanoscience and Nanotechnology Symposium - NN2005, Frascati, Italy (2005).
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  11. D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010). [CrossRef]
  12. T. K. M. Diem and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  13. C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies,” Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10–14 (2008).
  14. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009). [CrossRef]
  15. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  16. K. B. Alici and E. Ozbay, “Photonic metamaterial absorber designs for infrared solar-cell applications,” Proc. SPIE 7772, 77721B, 77721B-3 (2010). [CrossRef]
  17. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  18. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011). [CrossRef] [PubMed]
  19. CST, GmbH, CST-Microwave Studio, Darmstadt, Germany, 2009.
  20. K. B. Alici, A. E. Serebryannikov, and E. Ozbay, “Photonic magnetic metamaterial basics,” Photon. Nanostructures 9(1), 15–21 (2011). [CrossRef]
  21. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998).
  22. J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express 15(26), 17881–17890 (2007). [CrossRef] [PubMed]
  23. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited