OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14277–14289

Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation

Ivan B. Djordjevic  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14277-14289 (2011)
http://dx.doi.org/10.1364/OE.19.014277


View Full Text Article

Enhanced HTML    Acrobat PDF (1305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

© 2011 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(040.1880) Detectors : Detection
(060.4080) Fiber optics and optical communications : Modulation
(060.2605) Fiber optics and optical communications : Free-space optical communication
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 1, 2011
Revised Manuscript: June 27, 2011
Manuscript Accepted: June 29, 2011
Published: July 11, 2011

Citation
Ivan B. Djordjevic, "Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation," Opt. Express 19, 14277-14289 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Moision and J. Hamkins, “Deep-space optical communications downlink budget: modulation and coding,“ The Interplanetary Network Progress Report 42-154, April-June 2003 (Jet Propulsion Laboratory, Pasadena, California, 15 August 2003), pp. 1-28, http://ipnpr.jpl.nasa.gov/progress_report/42-154/154K.pdf .
  2. B. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,“ The Interplanetary Network Progress Report 42-161 (Jet Propulsion Laboratory, Pasadena, California, 15 May 2005), pp. 1-25, http://ipnpr.jpl.nasa.gov/progress_report/42-161/161T.pdf .
  3. F. Xu, M.-A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1(5), 404–415 (2009). [CrossRef]
  4. S. J. Dolinar, J. Hamkins, B. E. Moision, and V. A. Vilnrotter, “Optical modulation and coding,” in Deep Space Optical Communications, H. Hemmati, ed. (Wile, 2006), pp. 215–299.
  5. H. Hemmati, “Interplanetary laser communications,” Optics & Photonics News 18(11), 22–27 (2007). [CrossRef]
  6. L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
  7. I. B. Djordjevic and M. Arabaci, “LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication,” Opt. Express 18(24), 24722–24728 (2010). [CrossRef] [PubMed]
  8. I. B. Djordjevic, “Orbital angular momentum (OAM) based LDPC-coded deep-space optical communication,” Proc. SPIE 7923, 792306, 792306–792308 (2011) (invited paper). [CrossRef]
  9. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005). [CrossRef] [PubMed]
  10. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47(13), 2414–2429 (2008). [CrossRef] [PubMed]
  11. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004). [CrossRef] [PubMed]
  12. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  13. M. T. Gruneisen, W. A. Miller, R. C. Dymale, and A. M. Sweiti, “Holographic generation of complex fields with spatial light modulators: application to quantum key distribution,” Appl. Opt. 47(4), A32–A42 (2008). [CrossRef] [PubMed]
  14. M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory 50(8), 1788–1793 (2004). [CrossRef]
  15. S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications (Prentice Hall, 2004).
  16. I. B. Djordjevic, M. Arabaci, and L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009). [CrossRef]
  17. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun. 53(8), 1288–1299 (2005). [CrossRef]
  18. I. B. Djordjevic and M. Arabaci, “LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication,” Opt. Express 18(24), 24722–24728 (2010). [CrossRef] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  20. I. B. Djordjevic, M. Arabaci, L. Xu, and T. Wang, “Generalized OFDM (GOFDM) for ultra-high-speed optical transmission,” Opt. Express 19(7), 6969–6979 (2011). [CrossRef] [PubMed]
  21. H. G. Batshon and I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/ phase/polarization modulation,” IEEE Photon. Technol. Lett. 22(5), 299–301 (2010). [CrossRef]
  22. H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009). [CrossRef]
  23. I. B. Djordjevic and H. G. Batshon, “Generalized hybrid subcarrier/amplitude/phase/polarization LDPC-coded modulation based FSO Networking,” in Proceedings of IEEE 12th International Conference on Transparent Optical Networks (ICTON 2010) (IEEE, 2010), paper Th.B3.4.
  24. W. Shieh and I. B. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2009).
  25. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998). [CrossRef]
  26. A. Goldsmith, Wireless Communications (Cambridge University Press, 2005).
  27. D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, 2005).
  28. T. M. Duman and A. Ghrayeb, Coding for MIMO Communication Systems (Wiley, 2007).
  29. I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation,” Opt. Express 16(19), 14845–14852 (2008). [CrossRef] [PubMed]
  30. J. G. Proakis, Digital Communication (McGraw Hill, 2001).
  31. I. B. Djordjevic and G. T. Djordjevic, “On the communication over strong atmospheric turbulence channels by adaptive modulation and coding,” Opt. Express 17(20), 18250–18262 (2009). [CrossRef] [PubMed]
  32. I. B. Djordjevic, “Adaptive modulation and coding for communication over the atmospheric turbulence channels,” in Proceedings of IEEE Photonics Society Summer Topicals (IEEE, 2009), paper TuD3.3.
  33. M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express 18(3), 1820–1832 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited