OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14315–14320

High efficiency 1342 nm Nd:YVO4 laser in-band pumped at 914 nm

Xin Ding, Su-Jia Yin, Chun-Peng Shi, Xue Li, Bin Li, Quan Sheng, Xuan-Yi Yu, Wu-Qi Wen, and Jian-Quan Yao  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14315-14320 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1069 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-efficiency 1342 nm Nd:YVO4 laser in-band pumped at 914 nm is demonstrated for the first time. Using an all-solid-state Nd:YVO4 laser operating at 914 nm as pump source, 0.86 W output was obtained with 1.82 W absorbed pump power. Corresponding slope efficiency of 65.4% was the highest of Nd:YVO4 lasers operating at 1342 nm to the best of our knowledge. Effects of crystal’s doping concentration and temperature on laser power and conversion efficiency were also investigated.

© 2011 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5560) Lasers and laser optics : Pumping

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 28, 2011
Revised Manuscript: May 25, 2011
Manuscript Accepted: June 16, 2011
Published: July 12, 2011

Xin Ding, Su-Jia Yin, Chun-Peng Shi, Xue Li, Bin Li, Quan Sheng, Xuan-Yi Yu, Wu-Qi Wen, and Jian-Quan Yao, "High efficiency 1342 nm Nd:YVO4 laser in-band pumped at 914 nm," Opt. Express 19, 14315-14320 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Di Lieto, P. Minguzzi, A. Piratsu, S. Sanguinetti, and V. Magni, “A 7-W diode-pumped Nd:YVO4 cw laser at 1.34 μm,” Appl. Phys. B 75, 463–466 (2002). [CrossRef]
  2. J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82(19), 3159–3161 (2003). [CrossRef]
  3. A. Sennaroglu, “Efficient continuous-wave operation of a diode-pumped Nd:YVO4 laser at 1342 nm,” Opt. Commun. 164(4-6), 191–197 (1999). [CrossRef]
  4. A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004). [CrossRef]
  5. Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, “Study of high-power diode-end-pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion,” Opt. Commun. 163(4-6), 198–202 (1999). [CrossRef]
  6. A. Di Lieto, P. Minguzzi, A. Piratsu, S. Sanguinetti, and V. Magni, “High-power diffraction-limited diode-pumped Nd:YVO4 cw Laser at 1.34 μm,” Adv. Solid-State Lasers 68, 570–574 (2002).
  7. H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express 11(19), 2411–2415 (2003). [CrossRef] [PubMed]
  8. R. Zhou, W. Q. Wen, Z. Q. Cai, X. Ding, P. Wang, and J. Q. Yao, “Efficient stable simultaneous CW dual-wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm,” Chin. Opt. Lett. 3, 597–599 (2005).
  9. Z. Haiyong, Z. Ge, H. Chenghui, W. Yong, H. Lingxiong, C. Jing, C. Weidong, and C. Zhenqiang, “Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser,” Appl. Opt. 46(3), 384–388 (2007). [CrossRef] [PubMed]
  10. N. Pavel, V. Lupei, and T. Taira, “1.34-mum efficient laser emission in highly-doped Nd:YAG under 885-nm diode pumping,” Opt. Express 13(20), 7948–7953 (2005). [CrossRef] [PubMed]
  11. J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, “879-nm direct-pumped Nd:GdVO4 lasers: 1.3-μm laser emission and heat generation characteristics,” Adv. Solid-State Photon. 98, 183–187 (2005).
  12. X. Ding, H. Zhang, R. Wang, W. Q. Wen, P. Wang, J. Q. Yao, and X. Y. Yu, “High-efficiency direct-pumped Nd:YVO4 laser operating at 1.34 μm,” Opt. Express 16(15), 11247–11252 (2008). [CrossRef] [PubMed]
  13. D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34(14), 2159–2161 (2009). [CrossRef] [PubMed]
  14. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous wave end pumped solid state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990). [CrossRef]
  15. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998). [CrossRef]
  16. X. Délen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B 28(5), 972–976 (2011). [CrossRef]
  17. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26(11), 2084–2088 (2009). [CrossRef]
  18. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70(4), 487–490 (2000). [CrossRef]
  19. X. Délen, F. Balembois, O. Musset, and P. Georges, “Characteristics of laser operation at 1064 nm in Nd:YVO4 under diode pumping at 808 and 914 nm,” J. Opt. Soc. Am. B 28(1), 52–57 (2011). [CrossRef]
  20. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998). [CrossRef]
  21. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22(13), 991–993 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited