OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14354–14369

A high speed electro-optic phase shifter based on a polymer-infiltrated P-S-N diode capacitor

Maoqing Xin, Ching Eng Png, Soon Thor Lim, Vivek Dixit, and Aaron J. Danner  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14354-14369 (2011)
http://dx.doi.org/10.1364/OE.19.014354


View Full Text Article

Enhanced HTML    Acrobat PDF (1663 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polymer-infiltrated P-S-N diode capacitor configuration is proposed and a high speed electro-optic phase shifter based on a silicon organic hybrid platform is designed and modeled. The structure enables fast carrier depletion in addition to the second order nonlinearity so that a large electro-optic overlapped volume is achievable. Moreover, the device speed can be significantly improved with the introduction of free carriers due to a reduced experienced transient capacitance. The advantages of the diode capacitor structure are highly suitable for application to a class of low aspect ratio slot waveguides where the RC limitation of the radio frequency response is minimized. According to our numerical results, by optimizing both the waveguide geometry and polarization mode, at least 269 GHz 3-dB bandwidth with high efficiency of 5.5 V-cm is achievable. More importantly, the device does not rely on strong optical confinement within the nano-slot, a feature that gives considerable tolerance in the use of nano-fabrication techniques. Finally, the high overlap and energy efficiency of the device can be applied to slow light or optical resonance media for realizing photonic integrated circuits-based green photonics.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(230.2090) Optical devices : Electro-optical devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Optoelectronics

History
Original Manuscript: May 9, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 1, 2011
Published: July 12, 2011

Citation
Maoqing Xin, Ching Eng Png, Soon Thor Lim, Vivek Dixit, and Aaron J. Danner, "A high speed electro-optic phase shifter based on a polymer-infiltrated P-S-N diode capacitor," Opt. Express 19, 14354-14369 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14354


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  2. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  3. T. Gorman, S. Haxha, H. Ademgil, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator,” IEEE J. Quantum Electron. 44(12), 1180–1187 (2008). [CrossRef]
  4. T. B. Jones, B. Penkov, J. Huang, P. Sullivan, J. Davis, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008). [CrossRef]
  5. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  6. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  7. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009). [CrossRef] [PubMed]
  8. M. Xin, C. E. Png, and A. J. Danner, “Breakdown delay-based depletion mode silicon modulator with photonic hybrid-lattice resonator,” Opt. Express 19(6), 5063–5076 (2011). [CrossRef] [PubMed]
  9. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  11. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009). [CrossRef] [PubMed]
  12. B. Jalali, S. Fathpour, and K. Tsia, “Green silicon photonics,” Opt. Photon. News 20(6), 18–23 (2009). [CrossRef]
  13. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010). [CrossRef] [PubMed]
  14. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010). [CrossRef] [PubMed]
  15. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  16. R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  17. H. Cao, T. F. Heinz, and A. Nahata, “Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers,” Opt. Lett. 27(9), 775–777 (2002). [CrossRef] [PubMed]
  18. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005). [CrossRef] [PubMed]
  19. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009). [CrossRef] [PubMed]
  20. BeamProp 7.0 user guide, RSoft Design Group, Inc., Ossining, NY.
  21. ATLAS user’s manual, SILVACO International, Santa Clara, CA.
  22. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, Inc., New Jersey, 2007).
  23. C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008–6015 (2004). [CrossRef]
  24. A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12(10), 1771–1776 (1994). [CrossRef]
  25. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (John Wiley & Sons, Inc., New Jersey, 1997).
  26. C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93(6), 061111 (2008). [CrossRef]
  27. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, H. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybird polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007). [CrossRef]
  28. T. D. Kim, J. W. Kang, J. Luo, S. H. Jang, J. W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007). [CrossRef] [PubMed]
  29. M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006). [CrossRef] [PubMed]
  30. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE 2008), pp. 4 - 6.
  31. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009). [CrossRef]
  32. H. S. Lee, T. D. Kang, H. Lee, S. K. Lee, J. H. Kim, and D. H. Choi, “Ellipsometric study of the poling effect on nonlinear-optical side-chain polymers containing disperse red 1,” J. Appl. Phys. 102(1), 013514 (2007). [CrossRef]
  33. J. T. Gallo, T. Kimura, S. Ura, T. Suhara, and H. Nishihara, “Method for characterizing poled-polymer waveguides for electro-optic integrated-optical-circuit applications,” Opt. Lett. 18(5), 349–351 (1993). [CrossRef] [PubMed]
  34. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited