OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14426–14436

SHG simulations of plasmonic nanoparticles using curved elements

René Kullock, Andreas Hille, Alexander Haußmann, Stefan Grafström, and Lukas M. Eng  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14426-14436 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that simulating plasmonic nanostructures by means of curved elements (CEs) significantly increases the accuracy and computation speed not only in the linear but also in the nonlinear regime. We implemented CEs within the discontinuous Galerkin (DG) method and, as an example of a nonlinear effect, investigated second-harmonic generation (SHG) at a silver nanoparticle. The second-harmonic response of the material is simulated by an extended Lorentz model (ELM). In the linear regime the CEs are ≈ 9 times faster than ordinary elements for the same accuracy, provide a much better convergence and show fewer unphysical field artifacts. For DG-SHG calculations CEs are almost indispensable to obtain physically reasonable results at all. Additionally, their boundary approximation has to be of the same order as their polynomial degree to achieve artifact-free field distributions. In return, the use of such CEs with the DG method pays off more than evidently, since the additional computation time is only 1%.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(290.5850) Scattering : Scattering, particles
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: March 25, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: June 1, 2011
Published: July 13, 2011

René Kullock, Andreas Hille, Alexander Haußmann, Stefan Grafström, and Lukas M. Eng, "SHG simulations of plasmonic nanoparticles using curved elements," Opt. Express 19, 14426-14436 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Sandoghdar, E. Klotzsch, V. Jacobsen, A. Renn, U. Håkanson, M. Agio, I. Gerhardt, J. Seelig, and G. Wrigge, “Optical detection of very small nonfluorescent nanoparticles,” Chimia 60, 761–764 (2006). [CrossRef]
  2. M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16, 12302–12312 (2008). [CrossRef] [PubMed]
  3. V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40, 1336–1337 (2009). [CrossRef]
  4. P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, “Two particle enhanced nano Raman microscopy and spectroscopy,” Nano Lett. 7, 1736–1740 (2007). [CrossRef] [PubMed]
  5. J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010). [CrossRef] [PubMed]
  6. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009). [CrossRef]
  7. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008). [CrossRef] [PubMed]
  8. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908). [CrossRef]
  9. A. Hille, R. Kullock, S. Grafstrom, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method,” J. Comput. Theor. Nanosci. 7, 1581–1586 (2010). [CrossRef]
  10. J. Niegemann, M. Konig, C. Prohm, R. Diehl, and K. Busch, “Using curved elements in the discontinuous Galerkin time-domain approach,” AIP Conf. Proc. 1291, 76–78 (2010). [CrossRef]
  11. J. Hesthaven and T. Warburton, “Nodal high-order methods on unstructured grids I. time-domain solution of Maxwell’s equations,” J. Comput. Phys. 181, 186–221 (2002). [CrossRef]
  12. T. Lu, P. Zhang, and W. Cai, “Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and PML boundary conditions,” J. Comput. Phys. 200, 549–580 (2004). [CrossRef]
  13. K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17, 14934–14947 (2009). [CrossRef] [PubMed]
  14. J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl. 7, 2–11 (2009). [CrossRef]
  15. J. Niegemann, W. Pernice, and K. Busch, “Simulation of optical resonators using DGTD and FDTD,” J. Opt. A, Pure Appl. Opt. 11, 114015 (2009). [CrossRef]
  16. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer, 2008). [CrossRef]
  17. R. Diehl, K. Busch, and J. Niegemann, “Comparison of low-storage Runge-Kutta schemes for discontinuous-Galerkin time-domain simulations of Maxwell’s equations,” J. Comput. Theor. Nanosci. 7, 1572–1580 (2010). [CrossRef]
  18. J. Schöberl, “NETGEN an advancing front 2D/3D-mesh generator based on abstract rules,” Comput. Visual. Sci. 1, 41–52 (1997). [CrossRef]
  19. C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (John Wiley & Sons, 1999).
  20. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999). [CrossRef]
  21. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82, 235403 (2010). [CrossRef]
  22. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980). [CrossRef]
  23. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010). [CrossRef]
  24. M. C. Larciprete, A. Belardini, M. G. Cappeddu, D. de Ceglia, M. Centini, E. Fazio, C. Sibilia, M. J. Bloemer, and M. Scalora, “Second-harmonic generation from metallodielectric multilayer photonic-band-gap structures,” Phys. Rev. A 77, 013809 (2008). [CrossRef]
  25. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P. Brevet, “Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett. 105, 077401 (2010). [CrossRef] [PubMed]
  26. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited