OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14437–14450

Calibrated 100-dB-dynamic-range electro-optic probe for high-power microwave applications

Dong-Joon Lee, Jae-Yong Kwon, No-Weon Kang, and John F. Whitaker  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14437-14450 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly stable electro-optic field probe with wide dynamic range is presented. The highly efficient electro-optic modulation mechanism – based on interference and field-induced phase retardations using a new embodiment with a relatively thick sensor crystal mounted on a fiber – is explained. The probe is calibrated up to 3.5 GHz through the use of a micro-TEM cell and a standard gain horn antenna, both devices in which the electric field may be calculated at the specific sensing location of an electro-optic probe. The field-calibrated sensor shows over 100 dB (≤ 1 V/m to > 100 kV/m) of linear dynamic range. Also, an issue with the instability of the sensors that often occurs in intense electric-field measurements associated with electro-optic crystals is overcome by a real-time, bias-control loop. The stabilized sensor performance and its potential use for (pulsed) high-power-microwave applications are discussed.

© 2011 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(350.4010) Other areas of optics : Microwaves
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Optical Devices

Original Manuscript: May 17, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 4, 2011
Published: July 13, 2011

Dong-Joon Lee, Jae-Yong Kwon, No-Weon Kang, and John F. Whitaker, "Calibrated 100-dB-dynamic-range electro-optic probe for high-power microwave applications," Opt. Express 19, 14437-14450 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. I. Bassen and G. S. Smith, “Electric field probes,” IEEE Trans. Antenn. Propag. 31(5), 710–718 (1983). [CrossRef]
  2. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000). [CrossRef]
  3. S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000). [CrossRef]
  4. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001). [CrossRef]
  5. H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007). [CrossRef]
  6. A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986). [CrossRef]
  7. M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).
  8. E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008). [CrossRef]
  9. D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010). [CrossRef]
  10. D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011). [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003),Ch. 8.
  12. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalite at near-infrared wavelengths,” J. Opt. Soc. Am. B 21(11), 1948–1952 (2004). [CrossRef]
  13. D. J. Lee and J. F. Whitaker, “Optimization of sideband modulation in optical-heterodyne-downmixed electro-optic sensing,” Appl. Opt. 48(8), 1583–1590 (2009). [CrossRef] [PubMed]
  14. D. J. Lee and J. F. Whitaker, “A simplified fabry–pérot electrooptic-modulation sensor,” IEEE Photon. Technol. Lett. 20(10), 866–868 (2008). [CrossRef]
  15. M. Bäckström, “HPM testing of a car: a representative example of the susceptibility of civil systems,” W4, In Proceedings of 13th International Zurich Symposium and Technical Exhibition on EMC, (Zurich, Switzerland, 1999), pp. 189–190.
  16. N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009). [CrossRef]
  17. J. LoVetri, A. Wilbers, and A. Zwamborn, “Microwave interaction with a personal computer: experiment and modeling,” In Proceedings of 13th International Zurich Symposium and Technical Exhibition on EMC, (Zurich, Switzerland, 1999), pp. 203–206.
  18. A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009). [CrossRef]
  19. A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982). [CrossRef] [PubMed]
  20. M. W. Wik and W. A. Radasky, “Intentional electromagnetic interference (IEMI)—Background and status of the standardization work in the International Electrotechnical Commission,” In Proceedings of URSI General Assembly, (Maastricht, The Netherlands, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited