OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14502–14507

Broadband time-reversal of optical pulses using a switchable photonic-crystal mirror

Yonatan Sivan and John B. Pendry  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14502-14507 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, Chumak et al. have demonstrated experimentally the time-reversal of microwave spin pulses based on non-adiabatically tuning the wave speed in a spatially-periodic manner [Nat. Comm. 1, 141 (2010)]. Here, we solve the associated wave equations analytically, and give an explicit formula for the reversal efficiency. We discuss the implementation for short optical electromagnetic pulses and show that the new scheme may lead to their accurate time-reversal with efficiency higher than before.

© 2011 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.2055) Nonlinear optics : Dynamic gratings
(250.4110) Optoelectronics : Modulators

ToC Category:
Nonlinear Optics

Original Manuscript: May 31, 2011
Revised Manuscript: June 20, 2011
Manuscript Accepted: June 20, 2011
Published: July 13, 2011

Yonatan Sivan and John B. Pendry, "Broadband time-reversal of optical pulses using a switchable photonic-crystal mirror," Opt. Express 19, 14502-14507 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fink, “Time-reversed acoustics,” Scientific American 91, (November1999).
  2. M. Fink, “Acoustic time-reversal mirrors: Imaging of complex media with acoustic and seismic waves,” Topics in Applied Physics 84, 17–43 (2002). [CrossRef]
  3. J. Aullbach, B. Gjonaj, P. M. Johnson, A. M. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef]
  4. O. Katz, Y. Bromberg, E. Small, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Phot. 5, 372–377 (2011). [CrossRef]
  5. D. M. Pepper, Laser handbook , Vol. 4, (North-Holland Physics, Amsterdam1988).
  6. J. B. Pendry, “Time-reversal and negative refraction,” Science 322, 71–73 (2008). [CrossRef] [PubMed]
  7. X. Li and M. I. Stockman, “Highly efficient spatio-temporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time-reversal,” Phys. Rev. B 77, 195109 (2008). [CrossRef]
  8. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Phot. 2, 110–115 (2008). [CrossRef]
  9. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, “Transmission of electrical signals by spin-wave interconversion in a magnetic insulator,” Nature 464, 262–266 (2010). [CrossRef] [PubMed]
  10. F. M. Cucchietti, “Time-reversal in an optical lattice,” J. Opt. Soc. Am. B 27, 30–35 (2010). [CrossRef]
  11. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Qu. Electron. 28, 2251–2261 (1992). [CrossRef]
  12. D. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time-reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25, 132–134 (2000). [CrossRef]
  13. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Exp. 17, 20605–20614 (2009). [CrossRef]
  14. M. F. Yanik and S. Fan, “Time-reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004). [CrossRef] [PubMed]
  15. S. Longhi, “Stopping and time-reversal of light in dynamic photonic structures via Bloch oscillations,” Phys. Rev. E 75, 026606 (2007). [CrossRef]
  16. A. V. Chumak, V. S. Tiberkevich, A. D. Karenowska, A. A. Serga, J. F. Gregg, A. N. Slavin, and B. Hillebrands, “All-linear time-reversal by a dynamic artificial crystal,” Nat. Comm. 1, 141 (2010). [CrossRef]
  17. D. A. B Miller, “Time reversal of optical pulses by four-wave mixing,” Opt. Lett. 5, 300–302 (1980). [CrossRef] [PubMed]
  18. M. Tsang and D. Psaltis, “Spectral phase conjugation with cross-phase modulation compensation,” Opt. Exp. 12, 2207–2219 (2004). [CrossRef]
  19. A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001). [CrossRef]
  20. G. A. Melkov, A. A. Serga, V. S. Tiberkevich, A. N. Oliynyk, and A. N. Slavin, “Wave Front Reversal of a Dipolar Spin Wave Pulse in a Non-Stationary Three-Wave Parametric Interaction,” Phys. Rev. Lett. 84, 3438–3441 (2000). [CrossRef] [PubMed]
  21. L. Tkeshelashvili and K. Busch, “Nonlinear three-wave interaction in photonic crystals,” Appl. Phys. B 81, 225–229 (2005). [CrossRef]
  22. Y. Sivan and J. B. Pendry, “Time-reversal in dynamically-tuned zero-gap periodic systems,” Phys. Rev. Lett. , 106, 193902 (2011). [CrossRef] [PubMed]
  23. Y. Sivan and J. B. Pendry, “Theory of wave-front reversal of short pulses in dynamically-tuned zero-gap periodic systems,” submitted; available on ArXiv at http://arxiv.org/abs/1105.5583 .
  24. C. M. de Sterke and J. E. Sipe, in Prog. in Opt. , Vol. XXXIV, (North-Holland, Amsterdam1994).
  25. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996). [CrossRef]
  26. P. Yeh, Optical Waves in Layered Media , (Wiley-Interscience, 2nd edition2005).
  27. G. Fibich, Y. Sivan, and M. I. Weinstein, “Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure,” Physica D 217, 31–57 (2006). [CrossRef]
  28. Y. Sivan, G. Fibich, and M. I. Weinstein, “Waves in nonlinear lattices: ultrashort optical pulses and bose-einstein condensates,” Phys. Rev. Lett. 97, 193902 (2006). [CrossRef] [PubMed]
  29. B. A. Malomed, Y. V. Kartashov, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–306 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited