OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14549–14567

Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices

A. Bhandari, B. Hamre, Ø. Frette, K. Stamnes, and J. J. Stamnes  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14549-14567 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We used size distributions of volume equivalent spherical particles with complex refractive index to model the inherent optical properties (IOPs) in four different layers of human skin at ten different wavelengths in the visible and near-infrared spectral bands. For each layer, we first computed the size-averaged absorption coefficient, scattering coefficient, and asymmetry factor for the collection of particles in a host medium using Mie theory and compared these IOPs in each layer with those obtained from a bio-optical model (BOM). This procedure was repeated, using an optimization scheme, until satisfactory agreement was obtained between the IOPs obtained from the particle size distribution and those given by the BOM. The size distribution as well as the complex refractive index of the particles, obtained from this modeling exercise, can be used to compute the phase matrix, which is an essential input to model polarized light transport in human skin tissue.

© 2011 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: April 28, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: June 23, 2011
Published: July 14, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

A. Bhandari, B. Hamre, Ø. Frette, K. Stamnes, and J. J. Stamnes, "Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices," Opt. Express 19, 14549-14567 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Payne, “Measurement of properties and function of skin,” Clin. Phys. Physiol. Meas. 12, 105–129 (1991). [CrossRef] [PubMed]
  2. M. Gillison, A History of the Body Tissues (Williams and Wilkins Co., Baltimore, Maryland, 1962).
  3. B. L. Diffey, “A Mathematical model for ultraviolet optics in skin,” Phys. Med. Biol. 28, 647–657 (1983). [CrossRef] [PubMed]
  4. K. P. Nielsen, L. Zhao, P. Juzenas, J. J. Stamnes, K. Stamnes, and J. Moan, “Reflectance spectra of pigmented and non-pigmented skin in the UV spectral region,” Photochem. Photobiol. 80, 450–455 (2004). [PubMed]
  5. A. R. Young, “Chromophores in Human Skin,” Phys. Med. Biol. 42, 789–802 (1997). [CrossRef] [PubMed]
  6. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 1–4 (2004). [CrossRef]
  7. J. Sandby-Møller, T. Paulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking,” Acta Derm. Venereol. 83, 410–413 (2003). [CrossRef] [PubMed]
  8. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005). [CrossRef]
  9. B. Farina, C. Bartoli, A. Bono, A. Colombo, M. Lualdi, G. Tragni, and R. Marchesini, “Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits,” Phys. Med. Biol. 45, 1243–1254 (2000). [CrossRef] [PubMed]
  10. M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis - a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146, 448–457 (2002). [CrossRef] [PubMed]
  11. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989). [CrossRef] [PubMed]
  12. S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993). [CrossRef] [PubMed]
  13. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermat. 77, 13–19 (1981). [CrossRef]
  14. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995). [CrossRef]
  15. J. Mobley and T. V. Dinh, “Optical properties of tissue,” in Biomedical Photonics Handbook , T. V. Dinh, ed.(CRC press, 2003), pp. 12–36.
  16. J. R Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to non-invasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  17. S. L. Jacques, “Optical assessment of tissue heterogeneity in biomaterial and implants,” Proc. SPIE 3914, 576–580 (2000), doi: . [CrossRef]
  18. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference, time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999). [CrossRef]
  19. K. P. Nielsen, L. Zhao, J. J. Stamnes, K. Stamnes, and J. Moan, “Importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes,” J. Photochem. Photobiol. 82, 194–198 (2006). [CrossRef]
  20. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modelling of visible light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995). [CrossRef] [PubMed]
  21. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258 –2260 (1995). [CrossRef] [PubMed]
  22. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51, 1479–1489, (2006). [CrossRef] [PubMed]
  23. J. R. Fristvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 1–10 (2007).
  24. Q. Fu and W. Sung, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354–1361 (2001). [CrossRef]
  25. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  26. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A Review,” J. Quant. Spectr. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  27. A. M. K. Nilsson, P. Alshom, A. Karlson, and S. A. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2747 (1998). [CrossRef]
  28. D. Petrov, E. Synelnyk, Y. Shkuratov, and G. Videen, “The T-matrix technique for calculations of scattering properties of ensembles of randomly oriented particles with different size,” J. Quant. Spectr. Radiat. Transfer 102, 85–110 (2006). [CrossRef]
  29. A. J. Cox, A. J. Deweerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002). [CrossRef]
  30. S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophoton. 3, 75–81 (2010). DOI . [CrossRef]
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (A Wiley-VCH, GmbH & Co.Weinheim, 2004), pp. 82–129.
  32. H. C. Van de Hulst, Light Scattering by Small Particles (Dover Publications Inc., New York, 1957), pp. 103–130.
  33. W. J. Wiscombe, “Improved Mie scattering algorithms,” Apl. Opt. 19, 1505–1509 (1980). [CrossRef]
  34. W. A. de Rooij and C. C. A. H. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).
  35. M. I. Mishchenko, “The electromagnetic optical theorem revisited,” J. Quant. Spectr. Radiat. Transfer 101, 404–410 (2006). [CrossRef]
  36. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 2002), pp. 74–79.
  37. M. Jermy, “New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics,” Opt. Express 13, 1981–1995 (2005).
  38. E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across the science: keys and clues,” BioScience 51, 341–351 (2001). [CrossRef]
  39. B. Hamre, J. Winther, S. Gerland, J. J. Stamnes, and K. Stamnes, “Modelled and measured optical transmittance of snow-covered first-year sea ice in Kongfjorden, Svalbard,” J. Geophys. Res. 109, 1–14 (2004). [CrossRef]
  40. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514, (1991). [CrossRef] [PubMed]
  41. K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV-VIS reflectance spectra - A feasibility study,” J. Photochem. Photobiol. B 93, 23–31 (2008). [CrossRef] [PubMed]
  42. M. J. C. van Gemert, A. J. Welch, W. M. Star, M. Motamedi, and W.-F. Cheong, “Tissue Optics for a slab geometry in the diffusion approximation,” Laser Med. Sci. 2, 295–302 (1987). DOI: [CrossRef]
  43. D. L. Swanson, S. D. Laman, M. Biryulina, K. P. Nielsen, G. Ryzhikov, J. J. Stamnes, B. Hamre, L. Zhao, F. S. Castellana, and K. Stamnes, “Optical transfer diagnosis of pigmented lesions: a pilot study,” Skin Res. Technol. 15, 330–337 (2009). doi: [CrossRef] [PubMed]
  44. K. Zhang, W. Li, H. Eide, and K. Stamnes, “A bio-optical model suitable for use in forward and inverse coupled atmosphere-ocean radiative transfer models,” J. Quant. Spectr. Radiat. Transfer 103, 411–4233 (2007). [CrossRef]
  45. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Estimation of wavelength dependence of refractive index of collagen fibers of scleral tissue,” Proc. SPIE 4162, 265–267 (2000). [CrossRef]
  46. D. L. Swanson, S. D. Laman, M. Biryulina, K. P. Nielsen, G. Ryzhikov, J. J. Stamnes, B. Hamre, L. Zhao, E. Sommersten, F. S. Castellana, and K. Stamnes, “Optical transfer diagnosis of pigmented lesions,” Dermatol. Surg. 36, 1–8 (2010). DOI: [CrossRef]
  47. R. L. P. Van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” OSA Annual BIOMED Topical Meeting (2004).
  48. D. J. Segelstein, “The complex refractive index of water,” M.Sc. thesis, University of Missouri, Kansas City (1981).
  49. S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/takatani.html .
  50. R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods: then and now,” J. Compt. Appl. Math. 124, 191–207, (2000). [CrossRef]
  51. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J: Optimization 9, 112–147 (1998). [CrossRef]
  52. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comp. Jour. 7, 308–313 (1965).
  53. http://www.baltermedical.com/ .
  54. C. Mätzler, “MATLAB functions for Mie scattering and absorption,” Inst. Appl. Phys., University of Bern (2002), http://arrc.ou.edu/~rockee/NRA_2007_website/Mie-scattering-Matlab.pdf .
  55. K. Hestenes, K. P. Nielsen, L. Zhao, J. J. Stamnes, and K. Stamnes, “Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system,” Appl. Opt. 46, 2333–2350 (2007). [CrossRef] [PubMed]
  56. C. Magnain, M. Elias, and J. Frigerio, “Skin color modelling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A 24, 2196–2203 (2007). [CrossRef]
  57. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and mucous tissues: A review,” J. Innov. Opt. Health Sci. Appl. Phys. 4, 9–38 (2011). [CrossRef]
  58. V. V. Tuchin, I. L. Maksinova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997). [CrossRef]
  59. J. C. Lai, Y. Y. Zhang, Z. Li, H. Jiang, and A. He, “Complex refractive index measurement of biological tissues by attenuated total ellipsometry,” Appl. Opt. 49, 3235–3237 (2010). [CrossRef] [PubMed]
  60. S. Chandrasekhar, Radiative Transfer (Dover Publication, Inc.N.Y., 1960).
  61. E. J. Dennis, G. J. Dolmans, R. K. Jain, and D. Fukumura, “Photodynamic therapy for cancer,” Nature Reviews Cancer 3, 380–387 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited