OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14726–14734

Photothermal reshaping of gold nanoparticles in a plasmonic absorber

Jing Wang, Yiting Chen, Xi Chen, Jiaming Hao, Min Yan, and Min Qiu  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14726-14734 (2011)
http://dx.doi.org/10.1364/OE.19.014726


View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate that a metamaterial nanostructure can have a localized heating response owing to plasmonic resonances in the near-infrared wavelength range (from 1.5 to 2µm). With a broadband nanosecond-pulse light, the temperature of composing gold particles in the nanostructure can be easily increased to over 900K within only several nanoseconds, resulting in re-shaping of the particles. The photothermal effect is elaborated with finite-element based numerical simulations. The absorption resonance can in principle be tailored with a great freedom by choosing appropriate metamaterial parameters. The light-induced heating in an artificial metamaterial can be potentially used for all-optical acute temperature tuning in a micro-environment, which may open new frontiers especially in nanotechnology and biotechnology.

© 2011 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: May 19, 2011
Revised Manuscript: July 8, 2011
Manuscript Accepted: July 8, 2011
Published: July 15, 2011

Citation
Jing Wang, Yiting Chen, Xi Chen, Jiaming Hao, Min Yan, and Min Qiu, "Photothermal reshaping of gold nanoparticles in a plasmonic absorber," Opt. Express 19, 14726-14734 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14726


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  2. W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009). [CrossRef] [PubMed]
  3. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006). [CrossRef] [PubMed]
  4. J. X. Huang and R. B. Kaner, “Flash welding of conducting polymer nanofibres,” Nat. Mater. 3(11), 783–786 (2004). [CrossRef] [PubMed]
  5. Y. Lu, J. Y. Huang, C. Wang, S. Sun, and J. Lou, “Cold welding of ultrathin gold nanowires,” Nat. Nanotechnol. 5(3), 218–224 (2010). [CrossRef] [PubMed]
  6. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  7. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  8. W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010). [CrossRef] [PubMed]
  9. H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett. 72(7), 789 (1998). [CrossRef]
  10. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000). [CrossRef]
  11. C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004). [CrossRef]
  12. J. Bosbach, D. Martin, F. Stietz, T. Wenzel, and F. Träger, “Laser-based method for fabricating monodisperse metallic nanoparticles,” Appl. Phys. Lett. 74(18), 2605 (1999). [CrossRef]
  13. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006). [CrossRef]
  14. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007). [CrossRef]
  15. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009). [CrossRef] [PubMed]
  16. F. Xiao, T.-H. Wu, and P. Y. Chiou, “Near field photothermal printing of gold microsctructures and nanostuctures,” Appl. Phys. Lett. 97(3), 031112 (2010). [CrossRef]
  17. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010). [CrossRef] [PubMed]
  18. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010). [CrossRef] [PubMed]
  19. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824 (1999). [CrossRef]
  20. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
  21. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  22. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  23. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997). [CrossRef] [PubMed]
  24. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  25. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef] [PubMed]
  26. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008). [CrossRef] [PubMed]
  27. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005). [CrossRef] [PubMed]
  28. J. M. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  29. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  30. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010). [CrossRef] [PubMed]
  31. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  32. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005). [CrossRef] [PubMed]
  33. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011). [CrossRef]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  35. The detailed implementation of the numerical model will be submitted for publication separately.
  36. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009). [CrossRef] [PubMed]
  37. X. L. Zhu, Y. Zhang, J. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4345–4349 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited