OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14779–14793

Focus detection criterion for refocusing in multi-wavelength digital holography

Li Xu, Mike Mater, and Jun Ni  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14779-14793 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The majority of focus detection criteria reported is based on amplitude contrast. Due to phase wrapping, phase contrast was previously reported unsuitable for focus finding tasks. By taking the advantage of multi-wavelength digital holography, we propose a new focus detection criterion based on phase contrast. Experimental results are presented to prove the feasibility of the developed criterion. Possible applications of the developed technology include inspecting machined surfaces in the auto industry.

© 2011 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(090.1995) Holography : Digital holography
(100.3175) Image processing : Interferometric imaging

ToC Category:

Original Manuscript: April 6, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: June 12, 2011
Published: July 18, 2011

Li Xu, Mike Mater, and Jun Ni, "Focus detection criterion for refocusing in multi-wavelength digital holography," Opt. Express 19, 14779-14793 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recognit. Lett. 9(1), 19–25 (1989). [CrossRef]
  2. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. Soc. Am. A 6, 396–400 (2004).
  3. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008). [CrossRef] [PubMed]
  4. Y. J. Choo and B. S. Kang, “The characteristics of the particle position along an optical axis in particle holography,” Meas. Sci. Technol. 17(4), 761–770 (2006). [CrossRef]
  5. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006). [CrossRef] [PubMed]
  6. J. Liu, X. Song, R. Han, and H. Wang, “Autofocus method in digital holographic microscopy,” Proc. SPIE 7283, 72833Q, 72833Q-6 (2009). [CrossRef]
  7. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13(18), 6738–6749 (2005). [CrossRef] [PubMed]
  8. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35(11), 1840–1842 (2010). [CrossRef] [PubMed]
  9. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24(23), 1693–1695 (1999). [CrossRef] [PubMed]
  10. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006). [CrossRef] [PubMed]
  11. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003). [CrossRef] [PubMed]
  12. Y. Zou, G. Pedrini, and H. Tiziani, “Surface contouring in a video frame by changing the wavelength of a diode laser,” Opt. Eng. 35(4), 1074–1079 (1996). [CrossRef]
  13. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007). [CrossRef] [PubMed]
  14. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010). [CrossRef] [PubMed]
  15. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7(9), 305–310 (2000). [CrossRef] [PubMed]
  16. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008). [CrossRef] [PubMed]
  17. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009). [CrossRef] [PubMed]
  18. D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48(34), H1–H8 (2009). [CrossRef] [PubMed]
  19. J. Kandulla, B. Kemper, S. Knoche, and G. von Bally, “Two-wavelength method for endoscopic shape measurement by spatial phase-shifting speckle-interferometry,” Appl. Opt. 43(29), 5429–5437 (2004). [CrossRef] [PubMed]
  20. C. C. Aleksoff, “Multi-wavelength digital holographic metrology,” Proc. SPIE 6311, 63111D, 63111D-7 (2006). [CrossRef]
  21. http://www.coherix.com/automotive .
  22. Li Xu and J. Ni, “3D resolution enhancement in multi-wavelength interferometric imaging by digital refocusing,” (Submitted manuscript to Appl. Opt. ). [PubMed]
  23. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  24. MATLAB, by Mathworks, http://www.Mathworks.com .
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed (McGraw-Hill, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited