OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14852–14859

Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides

Eui Su Lee, Sun-Goo Lee, Chul-Sik Kee, and Tae-In Jeon  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 14852-14859 (2011)
http://dx.doi.org/10.1364/OE.19.014852


View Full Text Article

Enhanced HTML    Acrobat PDF (1364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a tunable notch filter having a wide terahertz (THz) frequency range and a low-pass filter (LPF) having a 0.78 THz cutoff frequency. Single slit and multiple slits are positioned at the center of air gaps in tapered parallel-plate waveguides (TPPWG) to obtain the notch filter and LPF, respectively. The notch filter has a dispersion-free and low-loss transverse magnetic (TM) mode. The Q factor was proved to be 138, and the resonant frequency is easily tunable by adjusting the air gaps between TPPWG. On the other hand, the cut off frequency of the LPF was determined using a Bragg stop band, which depends on slit period. The LPF has a transition width of 68 GHz at the cutoff frequency and a dynamic range of 35 dB at stop bands. In addition, the characteristics of such filters were analyzed using finite-difference time-domain (FDTD) simulations.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(260.5740) Physical optics : Resonance
(350.5500) Other areas of optics : Propagation
(040.2235) Detectors : Far infrared or terahertz
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: May 17, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 9, 2011
Published: July 18, 2011

Citation
Eui Su Lee, Sun-Goo Lee, Chul-Sik Kee, and Tae-In Jeon, "Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides," Opt. Express 19, 14852-14859 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-14852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef] [PubMed]
  2. P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007). [CrossRef]
  3. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011). [CrossRef] [PubMed]
  4. Z. Jian, J. Pearce, and D. M. Mittleman, “Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy,” Opt. Lett. 29(17), 2067–2069 (2004). [CrossRef] [PubMed]
  5. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005). [CrossRef]
  6. A. L. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008). [CrossRef]
  7. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007). [CrossRef]
  8. S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009). [CrossRef]
  9. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express 17(11), 9212–9218 (2009). [CrossRef] [PubMed]
  10. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010). [CrossRef]
  11. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010). [CrossRef] [PubMed]
  12. M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010). [CrossRef]
  13. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009). [CrossRef]
  14. R. Mendis and D. M. Mittleman, “A 2-D artificial dielectric with 0 ≤ n < 1 for the terahertz region,” IEEE Microw. Wirel. Compon. Lett. 58(7), 1993–1998 (2010).
  15. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010). [CrossRef]
  16. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express 19(1), 162–167 (2011). [CrossRef] [PubMed]
  17. M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited