OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14903–14912

Plasmonic chiral contrast agents for optical coherence tomography: numerical study

Kalpesh B. Mehta and Nanguang Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14903-14912 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) is a widely used morphological imaging modality. Various contrast agents, which change localized optical properties, are used to extend the applicability of OCT, where intrinsic contrast is not sufficient. In this paper we propose the use of a dual-rod gold nano-structure as a polarization sensitive contrast agent. Using numerical simulation, we demonstrated that the proposed structure has tunable chiral response. Enhanced cross-section due to Plasmon resonance in gold nanoparticles, along with the chiral behavior can provide enhanced detection sensitivity. The proposed contrast agents may extend the applicability of OCT to the problems that require the molecular contrast with enhanced sensitivity.

© 2011 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.0113) Imaging systems : Imaging through turbid media
(160.1585) Materials : Chiral media
(290.5855) Scattering : Scattering, polarization

ToC Category:
Imaging Systems

Original Manuscript: April 4, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: June 2, 2011
Published: July 19, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Kalpesh B. Mehta and Nanguang Chen, "Plasmonic chiral contrast agents for optical coherence tomography: numerical study," Opt. Express 19, 14903-14912 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005). [CrossRef] [PubMed]
  2. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  3. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998). [CrossRef]
  4. Y. Sun and Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003). [CrossRef] [PubMed]
  5. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004). [PubMed]
  6. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007). [CrossRef] [PubMed]
  7. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32(11), 1438–1440 (2007). [CrossRef] [PubMed]
  8. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006). [CrossRef] [PubMed]
  9. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008). [CrossRef] [PubMed]
  10. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  11. V. Tuchin, L. Wang, and D. Zimnyakov, “Tissue structure and optical models,” in Optical Polarization in Biomedical Applications (Springer, 2006), pp. 7–28.
  12. C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980). [CrossRef]
  13. A. Y. Elezzabi and S. Sederberg, “Chirality and optical activity: a terahertz time-domain spectroscopy investigation,” Proc. SPIE 7214, 72140O (2009). [CrossRef]
  14. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001). [CrossRef]
  15. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).
  17. Lumerical Solutions Inc, FDTD Solutions. 2010, http://www.lumerical.com/fdtd.php .
  18. S. J. Orfanidis, Electromagnetic Waves and Antennas (2010), http://www.ece.rutgers.edu/~orfanidi/ewa/ .
  19. “IEEE standard definitions of terms for antennas,” IEEE Trans. Antenn. Propag. , AP-31 (1983).
  20. M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004). [CrossRef] [PubMed]
  21. P. J. Holmes and J. E. Snell, “A vapour etching technique for the photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited