OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14976–14989

Band limited data reconstruction in modulated polarimeters

Charles F. LaCasse, Russell A. Chipman, and J. Scott Tyo  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 14976-14989 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Data processing for sequential in time polarimeters based on the Data Reduction Matrix technique yield polarization artifacts in the presence of time varying signals. To overcome these artifacts, polarimeters are designed to operate at higher and higher speeds. In this paper we describe a band limited reconstruction algorithm that allows the measurement and processing of temporally varying Stokes parameters without artifacts. An example polarimeter consisting of a rotating retarder and polarizer is considered, and conventional processing methods are compared to a band limited reconstruction algorithm for the example polarimeter. We demonstrate that a significant reduction in error is possible using these methods.

© 2011 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 13, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 1, 2011
Published: July 20, 2011

Charles F. LaCasse, Russell A. Chipman, and J. Scott Tyo, "Band limited data reconstruction in modulated polarimeters," Opt. Express 19, 14976-14989 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Tyo, D. H. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  2. L. J. Cheng, M. Hamilton, C. Mahoney, and G. Reyes, “Analysis of AOTF hyperspectral imaging,” in “Proceedings of SPIE Vol. 2231, Algorithms for Multispectral and Hyperspectral Imagery,” , A. Iverson, ed. (SPIE, Bellingham, WA, 1994), pp. 158–166.
  3. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996). [CrossRef] [PubMed]
  4. M. P. Silverman and W. Strange, “Object delineation within turbid media by backscattering of phase modulated light,” Opt. Commun. 144, 7–11 (1997). [CrossRef]
  5. D. B. Chenault and J. L. Pezzaniti, “Polarization imaging through scattering media,”(SPIE, Bellingham, WA, 2000), pp. 124 – 133.
  6. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” in “ACM SIGGRAPH ASIA 2008 courses,”(ACM, New York, NY, USA, 2008), SIGGRAPH Asia ’08, pp. 71:1–71:15
  7. V. Thilak, D. G. Voelz, and C. D. Creusere, “Image segmentation from multi-look passive polarimetric imagery,” in “Proc. SPIE 6682 ,” , J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2007), p. 668206. [CrossRef]
  8. D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual-photoeleastic-modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007). [CrossRef] [PubMed]
  9. K. Sassen, “Polarization in LIDAR,” in “LIDAR: Range-resolved optical remote sensing of the atmosphere ,” ,C. Weitkamp, ed. (Springer, 2005), pp. 19–42.
  10. D. W. Tyler, A. M. Phenis, A. B. Tietjen, M. Virgen, J. D. Mudge, J. S. Stryjewski, and J. A. Dank, “First high-resolution passive polarimetric images of boosting rocket exhaust plumes,” in “Proc. SPIE vol. 7461: Polarization Science and Remote Sensing IV ,” , J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2009), p. 74610J.
  11. R. A. Chipman, “Polarimetry,” in “Handbook of Optics ,” , M. Bass, ed. (McGraw-Hill, 2009), 3rd ed.
  12. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, “General analysis and optimization of the four-detector photopolarimeter,” J. Opt. Soc. Am. A 5, 681–689 (1988). [CrossRef]
  13. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” in “Proceedigns of SPIE vol. 5888: Polarization Science and Remote Sensing II ,” , J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2005), p. 5888OV.
  14. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002). [CrossRef]
  15. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009). [CrossRef] [PubMed]
  16. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003). [CrossRef] [PubMed]
  17. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999). [CrossRef]
  18. R. M. E. Illing, “High-speed fieldable imaging stokes vector polarimeter,” in “Proceedigns of SPIE vol. 5888: Polarization Science and Remote Sensing II ,” , J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2005), p. 58880X.
  19. L. Gendre, A. Foulonneau, and L. Bigué, “High-speed imaging acquisition of stokes linearly polarized components using a single ferroelectric liquid crystal modulator,” in “Proc. SPIE vol. 7461: Polarization Science and Remote Sensing IV ,” , J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2009), p. 74610G.
  20. M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” in “Proceedings of SPIE vol. 3754, Polarization Measurement, Analysis, and Remote Sensing II ,” , D. H. Goldstein and D. B. Chenault, eds. (SPIE, Bellingham, WA, 1999), pp. 50–54.
  21. B. M. Ratliff, C. F. Lacasse, and J. S. Tyo, “Quantifying ifov error and compensating its effects in dofp polarimeters,” Opt. Express 17, 9112 – 9125 (2009). [CrossRef] [PubMed]
  22. D. S. Sabatke, M. R. Descour, E. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  23. J. S. Tyo and T. S. Turner, “Variable retardance, Fourier transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40, 1450–1458 (2001). [CrossRef]
  24. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1655 (1995). [CrossRef]
  25. J. S. Tyo, “Design of optimal polarimeters: maximization of SNR and minimization of systematic errors,” Appl. Opt. 41, 619–630 (2002). [CrossRef] [PubMed]
  26. F. Goudail and A. Beniere, “Estimation precision of the linear degree of polarization and of the angle of polarization in the presence of different types of noises,” Appl. Opt. 49, 683–693 (2010). [CrossRef] [PubMed]
  27. R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
  28. R. A. Chipman, “Polarimetric impulse response,” in “Proc. SPIE col. 1317: Polarimetery: radar, Infrared, Visible, Ultraviolet, and X-Ray ,”(SPIE, Bellingham, WA, 1990), pp. 223 – 241.
  29. J. P. McGuire and R. A. Chipman, “Diffraction image formation in optical systems with polarization aberrations. I: formulation and example,” J. Opt. Soc. Am. A 7, 1614–1626 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3127 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited