OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 14999–15008

Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization

Che Ju Hsu and Chia Rong Sheu  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 14999-15008 (2011)
http://dx.doi.org/10.1364/OE.19.014999


View Full Text Article

Enhanced HTML    Acrobat PDF (1219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid crystal (LC) lenses with a circularly hole-patterned electrode possess excellent characteristics in optical performance, especially for the capability of tunable focal lengths. But, non-uniformly symmetrical electric fields in LC lenses usually induce disclination lines when operating. In general, the occurrence of disclination lines not only degrades their optical capability such as imaging performance, but also spends more time for tuning focal lengths. In this paper, we use a way of polymer stabilization to successfully prevent the disclination lines in LC lenses. Even arbitrarily adjusting the applied voltages in LC lenses, it seems no occurrence of disclination lines again. In addition, we compare the basic optical performance for LC lenses with or without polymer stabilization. From experimental results, it shows that they almost have the same optical performance.

© 2011 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.3620) Optical design and fabrication : Lens system design
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: May 23, 2011
Revised Manuscript: July 8, 2011
Manuscript Accepted: July 11, 2011
Published: July 20, 2011

Citation
Che Ju Hsu and Chia Rong Sheu, "Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization," Opt. Express 19, 14999-15008 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-14999


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002). [CrossRef]
  2. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004). [CrossRef]
  3. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003). [CrossRef]
  4. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002). [CrossRef]
  5. S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009). [CrossRef]
  6. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007). [CrossRef]
  7. Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010). [CrossRef]
  8. F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996). [CrossRef]
  9. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004). [CrossRef] [PubMed]
  10. N. Fraval and J. L. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49(15), 2778–2783 (201l0). [CrossRef] [PubMed]
  11. M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003). [CrossRef]
  12. M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005). [CrossRef]
  13. C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011). [CrossRef]
  14. V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010). [CrossRef]
  15. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007). [CrossRef] [PubMed]
  16. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited