OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15020–15025

True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers

Jun Sakuma, Koichi Moriizumi, and Haruhiko Kusunose  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15020-15025 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a source of line-narrowed continuous-wave (CW) radiation at 193.4 nm with over 10 mW of output power for the first time, to our knowledge. The system configures four successive frequency conversions of outputs from three single-frequency fiber amplifiers at 1064, 1107, and 1963 nm. The 266-nm beam produced by frequency quadrupling of 1064-nm light is sum-frequency mixed with the 1963-nm light to generate 234.3-nm radiation, which is consequently mixed with the 1107-nm light to generate 193.4-nm radiation. Both mixings are achieved in temperature-tuned non-critically phase-matched (NCPM) crystals.

© 2011 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 31, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 13, 2011
Published: July 20, 2011

Jun Sakuma, Koichi Moriizumi, and Haruhiko Kusunose, "True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers," Opt. Express 19, 15020-15025 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Hemmati, J. C. Bergquist, and W. M. Itano, “Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity,” Opt. Lett. 8(2), 73–75 (1983). [CrossRef] [PubMed]
  2. K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003). [CrossRef]
  3. J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004). [CrossRef]
  4. H. Masuda, K. Kimura, N. Eguchi, and S. Kubota, “All-solid-sate, continuous-wave, 195 nm light generation in β-BaB2O4,” OSA Trends in Optics and photonics, vol. 50, Advanced Solid-State Lasers, C. Marshall, eds., (Optical Society of America, 2001), pp. 490−492.
  5. T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, “Efficient 193 nm generation by eighth harmonic of Er -doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Technical Digest Series (Optical Society of America, 2000), postdeadline paper CPD 9, pp. 17–18.
  6. H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.
  7. H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008). [CrossRef]
  8. A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Optical Microlithography XX. Edited by Flagello, Donis G. Proc. SPIE, 6520, pp. 65202Z (2007).
  9. D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36(18), 4159–4162 (1997). [CrossRef] [PubMed]
  10. K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999). [CrossRef]
  11. R. D. Mead, C. E. Hamilton, and D. D. Lowenthal, “Solid-state lasers for 193 nm lithography,” in Optical Microlithography X. G.E.Fuller, ed., Proc. SPIE 3051, 882–889 (1997).
  12. N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).
  13. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994). [CrossRef]
  14. T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008). [CrossRef] [PubMed]
  15. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968). [CrossRef]
  16. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980). [CrossRef]
  17. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980). [CrossRef]
  18. D. C. Gerstenberger, T. M. Trautmann, and M. S. Bowers, “Noncritically phase-matched second-harmonic generation in cesium lithium borate,” Opt. Lett. 28(14), 1242–1244 (2003). [CrossRef] [PubMed]
  19. J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), pp. 89–92.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited