OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15026–15040

Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system

Hongxin Huang, Takashi Inoue, and Hiroshi Tanaka  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15026-15040 (2011)
http://dx.doi.org/10.1364/OE.19.015026


View Full Text Article

Enhanced HTML    Acrobat PDF (1699 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.

© 2011 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 2, 2011
Manuscript Accepted: July 4, 2011
Published: July 20, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Hongxin Huang, Takashi Inoue, and Hiroshi Tanaka, "Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system," Opt. Express 19, 15026-15040 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef]
  2. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4552 . [CrossRef] [PubMed]
  3. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059 . [CrossRef] [PubMed]
  4. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 . [PubMed]
  5. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  6. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3354 . [CrossRef] [PubMed]
  7. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  8. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4792 . [CrossRef] [PubMed]
  9. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005). [CrossRef] [PubMed]
  10. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  11. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008). [CrossRef] [PubMed]
  12. S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010). [CrossRef] [PubMed]
  13. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002). [CrossRef] [PubMed]
  14. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  15. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal image,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007). [CrossRef]
  16. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900 . [CrossRef] [PubMed]
  17. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, “Compact adaptive optics line scanning ophthalmoscope,” Opt. Express 17(12), 10242–10258 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10242 . [CrossRef] [PubMed]
  18. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007). [CrossRef] [PubMed]
  19. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007). [CrossRef] [PubMed]
  20. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 11607–11621 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11607 . [CrossRef] [PubMed]
  21. W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20167 . [CrossRef] [PubMed]
  22. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008). [CrossRef] [PubMed]
  23. J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express 17(16), 13768–13784 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13768 . [CrossRef] [PubMed]
  24. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16671 . [CrossRef] [PubMed]
  25. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997). [CrossRef] [PubMed]
  26. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998). [CrossRef] [PubMed]
  27. H. Huang, T. Inoue, and T. Hara, “An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator,” Proc. SPIE 5639, 129–137 (2004). [CrossRef]
  28. T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008). [CrossRef]
  29. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007). [CrossRef]
  30. http://jp.hamamatsu.com/products/other/1013/X10468/index_en.html .
  31. T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009). [CrossRef]
  32. M. Hanebuchi, J. Sasaki, N. Shibata, Y. Fujisaka, Y. Yamada, H. Mukai, and S. Oshima, “Adaptive optics scanning laser ophthalmoscopy for imaging retina using a single liquid crystal spatial light modulator,” In ARVO 2010 Annual meeting, Poster A557, Program NO 2307, Fort Lauderdale, Florida, May 2–6 (2010).
  33. S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011). [CrossRef] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 2001), p. 528.
  35. H. Huang, T. Inoue, and T. Hara, “Adaptive aberration compensation system using a high-resolution liquid crystal on silicon spatial light modulator,” Proc. SPIE 7156, 71560F (2009).
  36. T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001). [CrossRef]
  37. American National Standards Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2000, (American National Standards Institute, 2000).
  38. G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), p. 221.
  39. D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (4105 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited