OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15047–15061

Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes

Daniel Weber, Pablo Albella, Pablo Alonso-González, Frank Neubrech, Han Gui, Tadaaki Nagao, Rainer Hillenbrand, Javier Aizpurua, and Annemarie Pucci  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15047-15061 (2011)
http://dx.doi.org/10.1364/OE.19.015047


View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interaction between micrometer-long nanoantennas within an array considerably modifies the plasmonic resonant behaviour; for fundamental resonances in the infrared already at micrometer distances. In order to get systematic knowledge on the relationship between infrared plasmonic resonances and separation distances dx and dy in longitudinal and transverse direction, respectively, we experimentally studied the optical extinction spectra for rectangularly ordered lithographic gold nanorod arrays on silicon wafers. For small dy , strong broadening of resonances and strongly decreased values of far-field extinction are detected which come along with a decreased near-field intensity, as indicated by near-field amplitude maps of the interacting nanoantennas. In contrast, near-field interaction over small dx does only marginally broaden the resonance. Our findings set a path for optimum design of rectangular nanorod lattices for surface enhanced infrared spectroscopy.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(300.6340) Spectroscopy : Spectroscopy, infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 29, 2011
Revised Manuscript: June 17, 2011
Manuscript Accepted: June 17, 2011
Published: July 21, 2011

Citation
Daniel Weber, Pablo Albella, Pablo Alonso-González, Frank Neubrech, Han Gui, Tadaaki Nagao, Rainer Hillenbrand, Javier Aizpurua, and Annemarie Pucci, "Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes," Opt. Express 19, 15047-15061 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  2. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008). [CrossRef]
  3. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006). [CrossRef]
  4. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008). [CrossRef] [PubMed]
  5. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]
  6. C. S. Levin, J. Kundu, A. Barhoumi, and N. J. Halas, “Nanoshell-based substrates for surface enhanced spectroscopic detection of biomolecules,” Analyst (Lond.) 134(9), 1745–1750 (2009). [CrossRef] [PubMed]
  7. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Stat. Solidi B 247(8), 2071–2074 (2010). [CrossRef]
  8. R. Aroca, Surface-enhanced Vibrational Spectroscopy (John Wiley & Sons, 2006).
  9. J. Grand, M. L. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005). [CrossRef]
  10. L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J. L. Bijeon, P. M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4–6), 303–307 (2006). [CrossRef]
  11. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008). [CrossRef] [PubMed]
  12. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  13. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  14. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008). [CrossRef] [PubMed]
  15. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006). [CrossRef]
  16. F. Neubrech, D. Weber, R. Lovrincic, A. Pucci, M. Lopes, T. Toury, and M. L. de la Chapelle, “Resonances of individual lithographic gold nanowires in the infrared,” Appl. Phys. Lett. 93(16), 163105 (2008). [CrossRef]
  17. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008). [CrossRef] [PubMed]
  18. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  19. F. Neubrech, A. García-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett. 96(21), 213111 (2010). [CrossRef]
  20. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010). [CrossRef] [PubMed]
  21. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  22. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004). [CrossRef]
  23. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004). [CrossRef]
  24. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticles pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  25. M. Gluodenis and C. A. Foss, “The effect of mutual orientation on the spectra of metal nanoparticle rod-rod and rod-sphere pairs,” J. Phys. Chem. B 106(37), 9484–9489 (2002). [CrossRef]
  26. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  27. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  28. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007). [CrossRef] [PubMed]
  29. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006). [CrossRef] [PubMed]
  30. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  31. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  32. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002). [CrossRef]
  33. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003). [CrossRef]
  34. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003). [CrossRef]
  35. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005). [CrossRef] [PubMed]
  36. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
  37. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  38. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  39. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003). [CrossRef]
  40. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005). [CrossRef] [PubMed]
  41. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5(11), 2246–2252 (2005). [CrossRef] [PubMed]
  42. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007). [CrossRef]
  43. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  44. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004). [CrossRef] [PubMed]
  45. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010). [CrossRef]
  46. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  47. Z. Chen, X. Li, A. Taflove, and V. Backman, “Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks,” Appl. Opt. 45(4), 633–638 (2006). [CrossRef] [PubMed]
  48. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  49. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  50. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Electromagn. Compat. 22(3), 191–202 (1980). [CrossRef]
  51. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008). [CrossRef] [PubMed]
  52. P. Albella, F. Moreno, J. M. Saiz, and F. González, “Surface inspection by monitoring spectral shifts of localized plasmon resonances,” Opt. Express 16(17), 12872–12879 (2008). [CrossRef] [PubMed]
  53. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004). [CrossRef] [PubMed]
  54. www.Neaspec.com
  55. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009). [CrossRef]
  56. M. Schnell, A. García-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010). [CrossRef] [PubMed]
  57. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006). [CrossRef]
  58. A. Pucci, F. Neubrech, J. Aizpurua, T. Cornelius, and M. Lamy de la Chapelle, “Electromagnetic nanowire resonances for field-enhanced spectroscopy,” in One-Dimensional Nanostructures, Z. Wang, eds. (Springer, 2008), pp. 175–215.
  59. M. Klevenz, F. Neubrech, R. Lovrincic, M. Jalochowski, and A. Pucci, “Infrared resonances of self-assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008). [CrossRef]
  60. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  61. H. V. Chung, F. Neubrech, and A. Pucci, “Infrared spectroscopy of antenna resonances,” Proc. SPIE 7394, 73941E, 73941E-4 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited