OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15077–15089

Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission

Barmak Heshmat, Hamid Pahlevaninezhad, Matthew Craig Beard, Chris Papadopoulos, and Thomas Edward Darcie  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15077-15089 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper studies the relation between photoexcitation of a single-walled carbon nanotube (SWNT) based device, and its THz output power in the context of THz photoconductive (PC) switching and THz photomixing. A detailed approach of calculating output THz power for such a device describes the effect of each parameter on the performance of the THz PC switch and highlights the design dependent achievable limits. A numerical assessment, with typical values for each parameter, shows that–subject to thermal stability of the device–SWNT based PC switch can improve the output power by almost two orders of magnitudes compared to conventional materials such as LT-GaAs.

© 2011 OSA

OCIS Codes
(230.6080) Optical devices : Sources
(040.2235) Detectors : Far infrared or terahertz
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: April 8, 2011
Revised Manuscript: June 23, 2011
Manuscript Accepted: July 9, 2011
Published: July 21, 2011

Barmak Heshmat, Hamid Pahlevaninezhad, Matthew Craig Beard, Chris Papadopoulos, and Thomas Edward Darcie, "Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission," Opt. Express 19, 15077-15089 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Auston and P. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43(7), 631 (1983). [CrossRef]
  2. T. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004). [CrossRef]
  3. S. Ono, H. Murakami, A. Quema, G. Diwa, N. Sarukura, R. Nagasaka, Y. Ichikawa, H. Ogino, E. Ohshima, A. Yoshikawa, and T. Fukuda, “Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses,” Appl. Phys. Lett. 87(26), 261112 (2005). [CrossRef]
  4. V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010). [CrossRef]
  5. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006). [CrossRef]
  6. J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010). [CrossRef]
  7. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993). [CrossRef]
  8. M. J. Hagmann, “Possibility of generating terahertz radiation by photomixing with clusters of carbon nanotubes,” J. Vac. Sci. Technol. B 26(2), 794 (2008). [CrossRef]
  9. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010). [CrossRef]
  10. B. Heshmat, H. Pahlevaninezhad, T. E. Darcie, and C. Papadopoulos, “Evaluation of carbon nanotubes for THz photomixing,” IEEE Radar Conference (IEEE, 2010), pp. 1176–1179.
  11. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006). [CrossRef] [PubMed]
  12. D. A. Stewart and F. Léonard, “Energy conversion efficiency in nanotube optoelectronics,” Nano Lett. 5(2), 219–222 (2005). [CrossRef] [PubMed]
  13. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett. 3(8), 1067–1071 (2003). [CrossRef]
  14. A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, “Photoconductivity of single-wall carbon nanotube films,” Carbon 42(5-6), 919–922 (2004). [CrossRef]
  15. X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, “Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States,” Nano Lett. 5(4), 749–752 (2005). [CrossRef] [PubMed]
  16. A. Serra, D. Manno, E. Filippo, A. Tepore, M. Letizia Terranova, S. Orlanducci, and M. Rossi, “Photoconductivity of packed homotype bundles formed by aligned single-walled carbon nanotubes,” Nano Lett. 8(3), 968–971 (2008). [CrossRef] [PubMed]
  17. S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17(8), 1843–1850 (2006). [CrossRef]
  18. S. Chuang, Physics of Optoelectronic Devices (J. Wiley, 1995), Chap. 2.
  19. M. C. Beard, J. L. Blackburn, and M. J. Heben, “Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films,” Nano Lett. 8(12), 4238–4242 (2008). [CrossRef] [PubMed]
  20. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005). [CrossRef]
  21. Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94(15), 157402 (2005). [CrossRef] [PubMed]
  22. E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005). [CrossRef]
  23. A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express 16(16), 11727–11734 (2008). [CrossRef] [PubMed]
  24. T. Hertel, R. Fasel, and G. Moos, “Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study,” Appl. Phys., A Mater. Sci. Process. 75(4), 449–465 (2002). [CrossRef]
  25. P. L. McEuen, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, and L. Balents, “Luttinger-liquid behavior in carbon nanotubes,” Nature 397(6720), 598–601 (1999). [CrossRef]
  26. T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” J. Phys. Condens. Matter 16(18), R553–R580 (2004). [CrossRef]
  27. N. V. Smith, “Classical generalization of the drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001). [CrossRef]
  28. P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007). [CrossRef]
  29. M. Tsai, C. Yu, C. Yang, N. Tai, T. Perng, C. Tu, Z. Khan, Y. Liao, and C. Chi, “Electrical transport properties of individual disordered multiwalled carbon nanotubes,” Appl. Phys. Lett. 89(19), 192115 (2006). [CrossRef]
  30. V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density,” Nano Lett. 6(2), 205–208 (2006). [CrossRef] [PubMed]
  31. T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett. 4(1), 35–39 (2004). [CrossRef]
  32. A. Behnam and A. Ural, “Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films,” Phys. Rev. B 75(12), 125432 (2007). [CrossRef]
  33. S. Haque, C. Marinelli, F. Udrea, and W. I. Milne, “Absorption characteristics of single wall carbon nanotubes,” NSTI Nanotech. Conference (NSTI, 2006), pp. 134–137.
  34. M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays,” ACS Nano 2(12), 2445–2452 (2008). [CrossRef] [PubMed]
  35. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Appl. Phys. Lett. 77(5), 666–669 (2000). [CrossRef]
  36. S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997). [CrossRef]
  37. S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001). [CrossRef]
  38. Y.-C. Tseng and J. Bokor, “Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts,” Appl. Phys. Lett. 96(1), 013103 (2010). [CrossRef]
  39. S. H. Han, S. H. Lee, J. H. Hur, J. Jang, Y.-B. Park, G. Irvin, and P. Drzaic, “Contact resistance between Au and solution-processed CNT,” Solid-State Electron. 54(5), 586–589 (2010). [CrossRef]
  40. M. G. Kang, J. H. Lim, S. H. Hong, D. J. Lee, S. W. Hwang, D. Whang, J. S. Hwang, and D. Ahn, “Microwave characterization of a single wall carbon nanotube bundle,” Jpn. J. Appl. Phys. 47(6), 4965–4968 (2008). [CrossRef]
  41. Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84(13), 2941–2944 (2000). [CrossRef] [PubMed]
  42. V. Pačebutas, A. Biciūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugzlys, and A. Baltuska, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010). [CrossRef]
  43. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997). [CrossRef] [PubMed]
  44. P. Kordoš, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation,” Appl. Phys., A Mater. Sci. Process. 87(3), 563–567 (2007). [CrossRef]
  45. K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Appl. Phys. Lett. 90(12), 123105 (2007). [CrossRef]
  46. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in THz technology,” IEEE Photonics J. 3, 307–310 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited