OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15127–15142

Surface-relief and polarization gratings for solar concentrators

Ties M. de Jong, Dick K. G. de Boer, and Cees W. M. Bastiaansen  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15127-15142 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transmission gratings that combine a large diffraction angle with a high diffraction efficiency and a low angular and wavelength dispersion could be used to collect sunlight in a light guide. In this paper we compare the diffractive properties of polarization gratings and classical surface-relief gratings and explore their possible use in solar concentrators. It is found that polarization gratings and surface-relief gratings have qualitatively comparable diffraction characteristics when their thickness parameters are within the same regime. Relatively large grating periods result in high diffraction efficiencies over a wide range of incident angles. For small grating periods the efficiency and the angular acceptance are decreased. Surface-relief gratings are preferred over polarization gratings as in-couplers for solar concentrators.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.0090) Holography : Holography
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

Original Manuscript: May 9, 2011
Manuscript Accepted: June 8, 2011
Published: July 21, 2011

Ties M. de Jong, Dick K. G. de Boer, and Cees W. M. Bastiaansen, "Surface-relief and polarization gratings for solar concentrators," Opt. Express 19, 15127-15142 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Swanson, “Photovoltaic concentrators,” in Handbook of Photovoltaic Science and Engineering , A. Luque and S. Hegedus, eds. (Wily & Sons, 2003).
  2. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, 2005), Chap. 13.
  3. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977). [CrossRef]
  4. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763–6768 (2008). [CrossRef] [PubMed]
  5. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21, 3739–3742 (1982). [CrossRef] [PubMed]
  6. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870 (2010). [CrossRef] [PubMed]
  7. W. T. Welford and R. Winston, “Nonconventional optical systems and the brightness theorem,” Appl. Opt. 21, 1531–1533 (1982). [CrossRef] [PubMed]
  8. R. Winston and W. T. Welford, “Efficiency of nonimaging concentrators in the physical-optics model,” J. Opt. Soc. Am. 72, 1564–1566 (1982). [CrossRef]
  9. J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, and S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41, 81 –94 (1997). [CrossRef]
  10. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984). [CrossRef]
  11. M. Xu, D. K. G. de Boer, C. M. van Heesch, A. J. H. Wachters, and H. P. Urbach, “Photoanisotropic polarization gratings beyond the small recording angle regime,” Opt. Express 18, 6703–6721 (2010). [CrossRef] [PubMed]
  12. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992). [CrossRef]
  13. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996). [CrossRef]
  14. T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20, 3271–3273 (1981). [CrossRef] [PubMed]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  16. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  17. C. V. Raman and N. S. Nagendra Nath, “The diffraction of light by high frequency sound waves: Part I.” Proc. Indian Acad. Sci., Sect. A 2, 406–412 (1935).
  18. W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967). [CrossRef]
  19. M. Moharam, T. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980). [CrossRef]
  20. M. Moharam, T. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980). [CrossRef]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  22. C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14, 11870–11884 (2006). [CrossRef] [PubMed]
  23. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24, 866–881 (2007). [CrossRef]
  24. Grating Solver Development Co., http://www.gsolver.com/ .
  25. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999). [CrossRef]
  26. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785–786 (2000). [CrossRef]
  27. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007). [CrossRef]
  28. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
  29. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, “Periodically aligned liquid crystal: Potential application for projection displays,” Mol. Cryst. Liq. Cryst. 451, 1–19 (2006). [CrossRef]
  30. R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited