OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15162–15172

Thermal effects in kilowatt all-fiber MOPA

Yuanyuan Fan, Bing He, Jun Zhou, Jituo Zheng, Houkang Liu, Yunrong Wei, Jingxing Dong, and Qihong Lou  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15162-15172 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermal effects and output power characteristics of kilowatt all-fiber master-oscillator power amplifier (MOPA) are investigated. Proper designs for cooling apparatus are proposed and demonstrated experimentally, for the purpose of minimizing splice heating which is critical for the reliability of high power operation. By using these optimized methods, a thermal damage-free, highly efficient ytterbium-doped double-clad fiber MOPA operating at 1080 nm with 1.17 kW output was obtained. The maximum surface temperature at the pump light launching end splice of the booster amplifier was 345 K, and the temperature rise for this key splice was 0.052 K/W.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3510) Lasers and laser optics : Lasers, fiber
(140.6810) Lasers and laser optics : Thermal effects
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 25, 2011
Revised Manuscript: July 3, 2011
Manuscript Accepted: July 4, 2011
Published: July 21, 2011

Yuanyuan Fan, Bing He, Jun Zhou, Jituo Zheng, Houkang Liu, Yunrong Wei, Jingxing Dong, and Qihong Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express 19, 15162-15172 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Yin, P. Yan, and M. Gong, “End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration,” Opt. Express 16(22), 17864–17869 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17864 . [CrossRef] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=josab-27-11-B63 . [CrossRef]
  3. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6088 . [CrossRef] [PubMed]
  4. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  5. B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75 killowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microw. Opt. Technol. Lett. 52(7), 1668–1671 (2010). [CrossRef]
  6. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1178 . [CrossRef] [PubMed]
  7. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermal-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001). [CrossRef]
  8. Y. Wang, C. Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photon. Technol. Lett. 16(1), 63–65 (2004). [CrossRef]
  9. N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett. 26(21), 1669–1671 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1669 . [CrossRef] [PubMed]
  10. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 719511 (2009).
  11. Y. Wang, “Heat dissipation in Kilowatt fiber power amplifiers,” IEEE J. Quantum Electron. 40(6), 731–740 (2004). [CrossRef]
  12. L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express 13(9), 3420–3428 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3420 . [CrossRef] [PubMed]
  13. P. Li, C. Zhu, S. Zou, H. Zhao, D. Jiang, G. Li, and M. Chen, “Theoretical and experimental investigation of thermal effects in a high power Yb3+-doped double-clad fiber laser,” Opt. Laser Technol. 40(2), 360–364 (2008). [CrossRef]
  14. A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33(3), 307–313 (1997). [CrossRef]
  15. D. E. Gray, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, 1972).
  16. P. Yan, A. Xu, and M. Gong, “Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer,” Opt. Eng. 45(12), 124201 (2006). [CrossRef]
  17. B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, and P. Loosen, “Heat transport in solid and air-clad fibers for high-power fiber lasers,” Opt. Express 15(25), 16787–16793 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16787 . [CrossRef] [PubMed]
  18. J. P. Gwinn and R. L. Webb, “Performance and testing of thermal interface materials,” Microelectron. J. 34(3), 215–222 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited