OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15188–15195

Hanbury Brown–Twiss effect with electromagnetic waves

T. Hassinen, J. Tervo, T. Setälä, and A. T. Friberg  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15188-15195 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The classic Hanbury Brown–Twiss experiment is analyzed in the space–frequency domain by taking into account the vectorial nature of the radiation. We show that as in scalar theory, the degree of electromagnetic coherence fully characterizes the fluctuations of the photoelectron currents when a random vector field with Gaussian statistics is incident onto the detectors. Interpretation of this result in terms of the modulations of optical intensity and polarization state in two-beam interference is discussed. We demonstrate that the degree of cross-polarization may generally diverge. We also evaluate the effects of the state of polarization on the correlations of intensity fluctuations in various circumstances.

© 2011 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.2110) Physical optics : Electromagnetic optics
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: May 26, 2011
Revised Manuscript: July 1, 2011
Manuscript Accepted: July 1, 2011
Published: July 22, 2011

T. Hassinen, J. Tervo, T. Setälä, and A. T. Friberg, "Hanbury Brown–Twiss effect with electromagnetic waves," Opt. Express 19, 15188-15195 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956). [CrossRef]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  3. G. Baym, “The physics of Hanbury Brown–Twiss intensity interferometer: from stars to nuclear collisions,” Acta Phys. Polonica B 29, 1839–1884 (1998).
  4. R. Martínez-Herrero, P. M. Mejías, and G. Piquero, Characterization of Partially Polarized Light Fields (Springer, 2009). [CrossRef]
  5. A. Luis, “An overview of coherence and polarization properties for multicomponent electromagnetic waves,” in Advances in Information Optics and Photonics , A. T. Friberg and R. Dändliker, eds. (SPIE Press, 2008), Chap. 9. [CrossRef]
  6. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic waves,” Opt. Express 11, 1137–1143 (2003). [CrossRef] [PubMed]
  7. A. T. Friberg and E. Wolf, “Relationships between the complex degrees of coherence in the space–time and in the space–frequency domains,” Opt. Lett. 20, 623–625 (1995). [CrossRef] [PubMed]
  8. T. Setälä, F. Nunziata, and A. T. Friberg, “Differences between partial polarizations in the space–time and space–frequency domains,” Opt. Lett. 34, 2924–2926 (2009). [CrossRef] [PubMed]
  9. M. Lahiri, “Polarization properties of stochastic light beams in the space–time and space–frequency domains,” Opt. Lett. 34, 2936–2938 (2009). [CrossRef] [PubMed]
  10. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space–frequency domain,” Opt. Lett. 29, 328–330 (2004). [CrossRef] [PubMed]
  11. T. Setälä, J. Tervo, and A. T. Friberg, “Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence,” Opt. Lett. 31, 2669–2671 (2006). [CrossRef] [PubMed]
  12. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space–frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [CrossRef]
  13. M. A. Alonso and E. Wolf, “The cross-spectral density matrix of a planar, electromagnetic stochastic source as a correlation matrix,” Opt. Commun. 281, 2393–2396 (2008). [CrossRef]
  14. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004). [CrossRef] [PubMed]
  15. O. Korotokova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198–200 (2005). [CrossRef]
  16. T. Setälä, J. Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young’s interference experiment,” Opt. Lett. 31, 2208–2210 (2006). [CrossRef] [PubMed]
  17. J. Tervo, T. Setälä, A. Roueff, Ph. Réfrégier, and A. T. Friberg, “Two-point Stokes parameters: interpretation and properties,” Opt. Lett. 34, 3074–3076 (2009). [CrossRef] [PubMed]
  18. T. Shirai and E. Wolf, “Correlations between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization,” Opt. Commun. 272, 289–292 (2007). [CrossRef]
  19. S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A: Pure Appl. Opt. 10, 055001 (2008). [CrossRef]
  20. A. Al-Quasimi, M. Lahiri, D. Kuebel, D. F. V. James, and E. Wolf, “The influence of the degree of cross-polarization on the Hanbury Brown–Twiss effect,” Opt. Express 18, 17124–17129 (2010). [CrossRef]
  21. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965). [CrossRef]
  22. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  23. T. Hassinen, J. Tervo, and A. T. Friberg, “Cross-spectral purity of electromagnetic fields,” Opt. Lett. 34, 3866–3868 (2009). [CrossRef] [PubMed]
  24. F. Gori, J. Tervo, and J. Turunen, “Correlation matrices for completely unpolarized beams,” Opt. Lett. 34, 1447–1449 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited