OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15221–15228

Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array

Bingxin Zhang, Yanhui Zhao, Qingzhen Hao, Brian Kiraly, Iam-Choon Khoo, Shufen Chen, and Tony Jun Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15221-15228 (2011)
http://dx.doi.org/10.1364/OE.19.015221


View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed and fabricated a dual-band plasmonic absorber in the near-infrared by employing a three-layer structure comprised of an elliptical nanodisk array on top of thin dielectric and metallic films. finite difference time domain (FDTD) simulations indicate that absorption efficiencies greater than 99% can be achieved for both resonance frequencies at normal incidence and the tunable range of the resonant frequency was modeled up to 700 nm by varying the dimensions of the three-layer, elliptical nanodisk array. The symmetry in our two-dimensional nanodisk array eliminates any polarization dependence within the structure, and the near-perfect absorption efficiency is only slightly affected by large incidence angles up to 50 degrees. Experimental measurements demonstrate good agreement with our simulation results.

© 2011 OSA

OCIS Codes
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: May 16, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 16, 2011
Published: July 25, 2011

Citation
Bingxin Zhang, Yanhui Zhao, Qingzhen Hao, Brian Kiraly, Iam-Choon Khoo, Shufen Chen, and Tony Jun Huang, "Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array," Opt. Express 19, 15221-15228 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15221


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). [CrossRef]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  3. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  5. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  6. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009). [CrossRef] [PubMed]
  7. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009). [CrossRef]
  8. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009). [CrossRef] [PubMed]
  9. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006). [CrossRef]
  10. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009). [CrossRef]
  11. S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008). [CrossRef]
  12. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  13. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008). [CrossRef] [PubMed]
  14. Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010). [CrossRef]
  15. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007). [CrossRef] [PubMed]
  16. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96(11), 113107 (2010). [CrossRef]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  18. B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009). [CrossRef] [PubMed]
  19. Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010). [CrossRef] [PubMed]
  20. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  21. Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007). [CrossRef]
  22. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009). [CrossRef] [PubMed]
  23. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010). [CrossRef]
  24. X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005). [CrossRef] [PubMed]
  25. Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010). [CrossRef]
  26. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008). [CrossRef]
  27. V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010). [CrossRef]
  28. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008). [CrossRef]
  29. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano ASAP, (2011). [CrossRef]
  30. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]
  31. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004). [CrossRef]
  32. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984). [CrossRef] [PubMed]
  33. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999). [CrossRef] [PubMed]
  34. F. D. T. D. Lumerical, http://www.lumerical.com/ , licensed to PSU BioNEMS Group.
  35. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited