OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15229–15235

Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction

Wei Guo, Jun-long Kou, Fei Xu, and Yan-qing Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15229-15235 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an engineered microfiber with nano-scale slots that produce ultra-flattened and low dispersion of ±10 ps/(nm·km) over a 340 nm wavelength range. It is comparable with the results in photonic crystal fibers and planar slot waveguides, but can be hardly realized in conventional circular microfibers. By confining the light in a low nonlinearity air slot, the nonlinear coefficient can be greatly reduced. With the unique geometry and excellent performance, the slot microfiber offers large potential in miniature fiber devices for high-speed telecom applications.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 31, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 1, 2011
Published: July 25, 2011

Wei Guo, Jun-long Kou, Fei Xu, and Yan-qing Lu, "Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction," Opt. Express 19, 15229-15235 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010). [CrossRef] [PubMed]
  2. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13(21), 8365–8371 (2005). [CrossRef] [PubMed]
  3. N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008). [CrossRef]
  4. K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14(15), 6870–6878 (2006). [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12(10), 2027–2032 (2004). [CrossRef] [PubMed]
  6. T. Niemi, G. Genty, M. Lehtonen, and H. Ludvigsen, “Infrared supercontinuum generated in short tapered fiber by pumping around second zero-dispersion wavelength,” in 2003 Conference on Lasers and Electro-Optics Europe, 2003. CLEO/Europe (IEEE Standards Office, 2003), p. 219.
  7. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000). [CrossRef] [PubMed]
  8. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  9. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  11. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010). [CrossRef] [PubMed]
  12. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010). [CrossRef] [PubMed]
  13. D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006). [CrossRef]
  14. D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010). [CrossRef] [PubMed]
  15. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009). [CrossRef] [PubMed]
  16. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010). [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, New York, 2001).
  18. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Amsterdam, 2006).
  19. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009). [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, CA, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited