OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15304–15321

Quantitative characterization of x-ray differential interference contrast microscopy using modulation transfer function

Takashi Nakamura and Chang Chang  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15304-15321 (2011)
http://dx.doi.org/10.1364/OE.19.015304


View Full Text Article

Enhanced HTML    Acrobat PDF (1918 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Performance of two types of differential interference contrast objectives, i.e., the XOR pattern and the zone-plate doublet, is quantitatively characterized and compared using modulation transfer function. Effects of partial coherence, finite absorption and phase in a complex object, as well as bias retardation are also examined.

© 2011 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(110.4100) Imaging systems : Modulation transfer function
(110.4980) Imaging systems : Partial coherence in imaging
(180.3170) Microscopy : Interference microscopy
(340.7460) X-ray optics : X-ray microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 26, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: July 11, 2011
Published: July 26, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Takashi Nakamura and Chang Chang, "Quantitative characterization of x-ray differential interference contrast microscopy using modulation transfer function," Opt. Express 19, 15304-15321 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4, 840–848 (2010). [CrossRef]
  2. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy,” Opt. Express 17, 17669–17677 (2009). [CrossRef] [PubMed]
  3. S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103, 110801 (2009). [CrossRef] [PubMed]
  4. C. Chang, A. Sakdinawat, P. Fischer, E. Anderson, and D. Attwood, “Single-element objective lens for soft X-ray differential interference contrast microscopy,” Opt. Lett. 31, 1564–1566 (2006). [CrossRef] [PubMed]
  5. T. Wilhein, B. Kaulich, E. Di Fabrizio, F. Romanato, S. Cabrini, and J. Susini, “Differential interference contrast X-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2082–2084 (2001). [CrossRef]
  6. E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein, “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express 11, 2278–2288 (2003). [CrossRef] [PubMed]
  7. A. Sakdinawat and Y. Liu, “Phase contrast soft X-ray microscopy using Zernike zone plates,” Opt. Express 16, 1559–1564 (2008). [CrossRef] [PubMed]
  8. O. von Hofsten, M. Bertilson, M. Lindblom, A. Holmberg, and U. Vogt, “Compact Zernike phase contrast X-ray microscopy using a single-element optic,” Opt. Lett. 33, 932–934 (2008). [CrossRef] [PubMed]
  9. C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010). [CrossRef]
  10. M. Dierolf, A. Menzel, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic X-ray computed tomography at the nanoscale,” Nature (London) 467, 436–439 (2010). [CrossRef]
  11. K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic X-ray diffraction microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 529–534 (2010). [CrossRef]
  12. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  13. A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed X-ray phase imaging and X-ray phase tomography with talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009). [CrossRef] [PubMed]
  14. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010). [CrossRef] [PubMed]
  15. U. Vogt, M. Lindblom, P. A. C. Jansson, T. T. Tuohimaa, A. Holmberg, H. M. Hertz, M. Wieland, and T. Wilhein, “Single-optical-element soft-X-ray interferometry with a laser-plasma x-ray source,” Opt. Lett. 30, 2167–2169 (2005). [CrossRef] [PubMed]
  16. M. C. Bertilson, O. von Hofsten, M. Lindblom, T. Wilhein, H. M. Hertz, and U. Vogt, “Compact high-resolution differential interference contrast soft X-ray microscopy,” Appl. Phys. Lett. 92, 064104 (2008). [CrossRef]
  17. C. Chang, P. Naulleau, E. Anderson, K. Rosfjord, and D. Attwood, “Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft X-ray wavelengths,” Appl. Opt. 41, 7384–7389 (2002). [CrossRef] [PubMed]
  18. B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B. Fayard, and J. Susini, “Differential interference contrast X-ray microscopy with twin zone plates,” J. Opt. Soc. Am. A 19, 797–806 (2002). [CrossRef]
  19. T. Nakamura and C. Chang, “Quantitative X-ray differential interference contrast microscopy with independently adjustable bias and shear,” Phys. Rev. A 83, 043808 (2011). [CrossRef]
  20. R. J. Becherer and G. B. Parrent, “Nonlinearity in optical imaging systems,” J. Opt. Soc. Am. 57, 1479–1482 (1967). [CrossRef]
  21. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15nm,” Nature (London) 435, 1210–1213 (2005). [CrossRef]
  22. O. von Hofsten, M. Bertilson, and U. Vogt, “Theoretical development of a high-resolution differential-interference-contrast optic for X-ray microscopy,” Opt. Express 16, 1132–1141 (2008). [CrossRef] [PubMed]
  23. A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009). [CrossRef]
  24. Y. Ichioka, K. Yamamoto, and T. Suzuki, “Image of a sinusoidal complex object in a partially coherent optical system,” J. Opt. Soc. Am. 65, 892–902 (1975). [CrossRef]
  25. Y. Ichioka and T. Suzuki, “Image of a periodic complex object in an optical system under partially coherent illumination,” J. Opt. Soc. Am. 66, 921–932 (1976). [CrossRef]
  26. S. Inoué and K. R. Spring, Video Microscopy: The Fundamentals , 2nd ed. (Plenum Press, 1997). [CrossRef]
  27. J. W. Goodman, Statistical Optics (Wiley, 1985).
  28. T. Nakamura and C. Chang, “Exact space invariant illumination for partially coherent imaging systems,” J. Opt. Soc. Am. A 27, 1953–1961 (2010). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics , 3rd ed. (Roberts & Company Publishers, 2005).
  30. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 1999).
  31. C. Chang, E. Anderson, P. Naulleau, E. Gullikson, K. Goldberg, and D. Attwood, “Direct measurement of index of refraction in the extreme-ultraviolet wavelength region with a novel interferometer,” Opt. Lett. 27, 1028–1030 (2002). [CrossRef]
  32. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185–2199 (1999). [CrossRef]
  33. C. Chang and T. Nakamura, “Partially coherent image formation theory for X-ray microscopy,” in Microscopy: Science, Technology, Applications and Education , 4th ed., A. Méndez-Vilas and J. Díaz, eds. (Formatex Research Center, 2010), Vol. 3, pp. 1897–1904.
  34. M. Born and E. Wolf, Principles of Optics , 6th ed. (Cambridge University Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited