OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15322–15338

Hologram recording via spatial density modulation of Nb Li 4 + / 5 + antisites in lithium niobate

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15322-15338 (2011)
http://dx.doi.org/10.1364/OE.19.015322


View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hologram recording is studied in thermally reduced, nominally undoped lithium niobate in the time domain from 10 ns to 100 s by means of intense ns pump laser pulses (λ = 532 nm) and continuous-wave probe light (λ = 785 nm). It is shown that mixed absorption and phase gratings can be recorded within 8 ns that feature diffraction efficiencies up to 23 % with non-exponential relaxation and lifetimes in the ms-regime. The results are explained comprehensively in the frame of the optical generation of a spatial density modulation of Nb Li 4 + / 5 + antisites and the related optical features, i.e. absorption as well as index changes mutually related via the Kramers-Kronig-relation. Implications of our findings, such as the electrooptical properties of small bound Nb Li 4 + polarons, the optical features of Nb Li 4 + : Nb Nb 4 + bipolarons, Nb Nb 4 + free polarons and O hole-polarons, the impact of light polarization of pump and probe beams as well as of the polaron density are discussed.

© 2011 OSA

OCIS Codes
(090.7330) Holography : Volume gratings
(160.3730) Materials : Lithium niobate
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: May 10, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 16, 2011
Published: July 26, 2011

Citation
M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, "Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate," Opt. Express 19, 15322-15338 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Emin, “Polarons,” McGraw Hill Encyclopedia of Science and Technology , 10th edn (McGraw-Hill, 2007), vol. 14, p. 125.
  2. O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter 21, 123201 (2009). [CrossRef]
  3. O. F. Schirmer, “O− bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18, R667 (2006). [CrossRef]
  4. D. Emin, “Phonon-assisted transition rates I. optical-phonon-assisted hopping in solids,” Adv. Phys. 24, 305 (1975). [CrossRef]
  5. D. Emin, “Optical properties of large and small polarons and bipolarons,” Phys. Rev. B 48, 13691 (1993). [CrossRef]
  6. D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566 (1974) [CrossRef]
  7. J. Shi, H. Fritze, G. Borchardt, and K. D. Becker, “Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate,” Phys. Chem. Chem. Phys. 13, 6925 (2011) [CrossRef] [PubMed]
  8. K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett 43, 336 (1983). [CrossRef]
  9. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085 (1993). [CrossRef]
  10. O. Beyer, D. Maxein, Th. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527 (2006). [CrossRef]
  11. P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Krätzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95, 067404 (2005). [CrossRef] [PubMed]
  12. C. Merschjann, D. Berben, M. Imlau, and M. Wöhlecke, “Evidence for two-path recombination of photoinduced small polarons in reduced LiNbO3,” Phys. Rev. Lett. 96, 186404 (2006).
  13. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009). [CrossRef]
  14. Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232 (2005). [CrossRef]
  15. J. Carnicero, M. Carrascosa, G. García, and F. Agulló-López, “Site correlation effects in the dynamics of iron impurities Fe2+/Fe3+ and antisite defects NbLi4+/NbLi5+ after a short-pulse excitation in LiNbO3,” Phys. Rev. B 72, 245108 (2005). [CrossRef]
  16. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253 (2004). [CrossRef]
  17. L. E. Halliburton, N. C. Giles, and T. H. Myers, “Final technical report,” Development of nonlinear optical materials for optical parametric oscillator and frequency conversion applications in the near- and mid-infrared, p. A342373 (2003).
  18. M. M. Chirila, N. Y. Garces, L. E. Halliburton, S. G. Demos, T. A. Land, and H. B. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys. 94, 6456 (2003). [CrossRef]
  19. W. Hong, L. E. Halliburton, K. T. Stevens, D. Perlov, G. C. Catella, R. K. Route, and R. S. Feigelson, “Electron paramagnetic resoncance study of electron and hole traps in β-BaB2O4 crystals,” J. Appl. Phys 94, 2510 (2003). [CrossRef]
  20. L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998). [CrossRef] [PubMed]
  21. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665 (1998). [CrossRef]
  22. O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011). [CrossRef]
  23. C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007). [CrossRef]
  24. J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055 (1987). [CrossRef]
  25. C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009). [CrossRef]
  26. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437 (1994). [CrossRef]
  27. R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]
  28. G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc 66, 80 (1970). [CrossRef]
  29. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications 1: Basic Effects , Springer Series in Optical Sciences (Springer-Verlag, 2006). [CrossRef]
  30. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000). [CrossRef]
  31. P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71, 125128 (2005). [CrossRef]
  32. S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008). [CrossRef]
  33. D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284 (2008). [CrossRef]
  34. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  35. O. F. Schirmer and D. von der Linde, “Two-photon and X–Ray–Induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35 (1978). [CrossRef]
  36. B. Faust, H. Müller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297 (1994). [CrossRef]
  37. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical–, Mössbauer– and EPR–methods,” Appl. Phys. 12, 355 (1977). [CrossRef]
  38. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, eds., Kramers-Kronig Relations in Optical Materials Research (Springer Verlag, 2005).
  39. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332 (1976). [CrossRef]
  40. B. Schoke, M. Imlau, H. Brüning, C. Merschjann, G. Corradi, K. Polgár, and I. I. Naumova, “Transient light-induced absorption in periodically poled lithium niobate: small polaron hopping in the presence of a spatially modulated defect concentration,” Phys. Rev. B 81, 132301 (2010). [CrossRef]
  41. I. G. Austin and N. F. Mott, “Polarons in crystalline and non-crystalline materials,” Adv. Phys. 18, 41 (1969). [CrossRef]
  42. M. Jazbinsek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74, 407 (2002). [CrossRef]
  43. T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electrooptic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499 (1999). [CrossRef]
  44. S. Fries and S. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Phys. Status Solidi A 125, 369 (1991). [CrossRef]
  45. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974). [CrossRef]
  46. O. F. Schirmer, S. Juppe, and J. Koppitz, “ESR–, optical and photovoltaic studies of reduced undoped LiNbO3,” Cryst. Lattice Defects Amorphous Mater. 16, 353 (1987).
  47. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited