OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15363–15370

Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity

Shao-Ding Liu, Zhi Yang, Rui-Ping Liu, and Xiu-Yan Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15363-15370 (2011)
http://dx.doi.org/10.1364/OE.19.015363


View Full Text Article

Enhanced HTML    Acrobat PDF (1619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Plasmonic-induced optical transparency with double split nanoring cavity is investigated with finite difference time domain method. The coupling between the bright third-order mode of split nanoring with one gap and the dark quadrupole mode of split nanoring with two gaps leads to plasmonic analogue of electromagnetically induced transparency. The transparence window is easily modified to the near-infrared and visible range. Numerical results show a group index of 16 with transmission exceeding 0.76 is achieved for double split nanoring cavity. There is large cavity volume of double split nanoring, and the field enhancement inside the cavity is homogenous. Double split nanoring cavity could be a good platform for slow light and sensing applications.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 13, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 20, 2011
Published: July 26, 2011

Citation
Shao-Ding Liu, Zhi Yang, Rui-Ping Liu, and Xiu-Yan Li, "Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity," Opt. Express 19, 15363-15370 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15363


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  3. Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005). [CrossRef]
  4. S. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999). [CrossRef]
  5. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]
  6. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  7. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29(6), 626–628 (2004). [CrossRef] [PubMed]
  8. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004). [CrossRef] [PubMed]
  9. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  10. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  12. Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010). [CrossRef] [PubMed]
  13. Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010). [CrossRef]
  14. Y. Lu, X. Jin, H. Zheng, Y. P. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express 18(13), 13396–13401 (2010). [CrossRef] [PubMed]
  15. X. R. Su, Z. S. Zhang, L. H. Zhang, Q. Q. Li, C. C. Chen, Z. J. Yang, and Q. Q. Wang, “Plasmonic interferences and optical modulations in dark-bright-dark plasmon resonators,” Appl. Phys. Lett. 96(4), 043113 (2010). [CrossRef]
  16. H. Xu, Y. Lu, Y. P. Lee, and B. S. Ham, “Studies of electromagnetically induced transparency in metamaterials,” Opt. Express 18(17), 17736–17747 (2010). [CrossRef] [PubMed]
  17. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  18. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef] [PubMed]
  19. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” N. J. Phys. 13(2), 023034 (2011). [CrossRef]
  21. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef] [PubMed]
  22. H. Merbold, A. Bitzer, and T. Feurer, “Near-field investigation of induced transparency in similarly oriented double split-ring resonators,” Opt. Lett. 36(9), 1683–1685 (2011). [CrossRef] [PubMed]
  23. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010). [CrossRef] [PubMed]
  24. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009). [CrossRef]
  25. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010). [CrossRef]
  26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009). [CrossRef] [PubMed]
  27. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010). [CrossRef] [PubMed]
  28. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  29. M. Kang, H.-X. Cui, Y. Li, B. Gu, J. Chen, and H.-T. Wang, “Fano-Feshbach resonance in structural symmetry broken metamaterials,” J. Appl. Phys. 109(1), 014901 (2011). [CrossRef]
  30. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80(3), 035104 (2009). [CrossRef]
  31. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]
  32. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  33. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19(2), 628–637 (2011). [CrossRef] [PubMed]
  34. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009). [CrossRef]
  35. L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011). [CrossRef] [PubMed]
  36. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011). [CrossRef] [PubMed]
  37. L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010). [CrossRef]
  38. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  39. Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010). [CrossRef]
  40. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  41. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  42. T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011). [CrossRef] [PubMed]
  43. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  44. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4–6), 262–266 (2008). [CrossRef]
  45. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007). [CrossRef]
  46. A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tuneable visible resonances in crescent shaped nano-split-ring resonanctors,” Appl. Phys. Lett. 91(9), 093109 (2007). [CrossRef]
  47. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express 17(4), 2906–2917 (2009). [CrossRef] [PubMed]
  48. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009). [CrossRef]
  49. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010). [CrossRef] [PubMed]
  50. A. Taflove and S. C. Hagness, Computational electrodynamics: The finite-difference time-domain method (Artech House, Boston, 2005).
  51. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  52. M. G. Nielsen, A. Pors, R. B. Nielsen, A. Boltasseva, O. Albrektsen, and S. I. Bozhevolnyi, “Demonstration of scattering suppression in retardation-based plasmonic nanoantennas,” Opt. Express 18(14), 14802–14811 (2010). [CrossRef] [PubMed]
  53. A. Pors, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27(8), 1680–1687 (2010). [CrossRef]
  54. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited