OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15532–15537

Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared

S. Sederberg and A. Y. Elezzabi  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15532-15537 (2011)
http://dx.doi.org/10.1364/OE.19.015532


View Full Text Article

Enhanced HTML    Acrobat PDF (4085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A plasmonic antenna design is proposed and investigated numerically over a large parameter space. By considering the contour of a bowtie antenna and introducing an additional design parameter, the contour thickness, it is demonstrated that the resonant wavelength of the antenna may be tuned over a broad spectral range while maintaining a constant antenna footprint. These new antennas allow for a factor of 3.6 reduction in the antenna footprint and an increase in the gap enhancement by 28%.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 2, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 14, 2011
Published: July 28, 2011

Citation
S. Sederberg and A. Y. Elezzabi, "Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared," Opt. Express 19, 15532-15537 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007). [CrossRef]
  2. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010). [CrossRef] [PubMed]
  3. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]
  4. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  5. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  6. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007). [CrossRef] [PubMed]
  7. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011). [CrossRef] [PubMed]
  8. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008). [CrossRef] [PubMed]
  9. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  10. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997). [CrossRef]
  11. Y.-F. Chau, H.-H. Yeh, and D. P. Tsai, “A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole,” J. Electromagn. Waves Appl. 24(11), 1621–1632 (2010). [CrossRef]
  12. Y.-F. Chau, H.-H. Yeh, and D. P. Tsai, “Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs,” J. Electromagn. Waves Appl. 24(8), 1005–1014 (2010). [CrossRef]
  13. Y.-F. Chau and H.-H. Yeh, “A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances,” J. Nanopart. Res. 13(2), 637–644 (2011). [CrossRef]
  14. L. Wang, L. Cai, J. Zhang, W. Bai, H. Hu, and G. Song, “Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for surface-enhanced Raman scattering spectroscopy,” J. Raman Spectrosc 42(6), 1263–1266 (2011). [CrossRef]
  15. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  16. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009). [CrossRef]
  17. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  18. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  19. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited