OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15560–15573

Spontaneous and sequential transitions of a Gaussian beam into diffraction rings, single ring and circular array of filaments in a photopolymer

Ana B. Villafranca and Kalaichelvi Saravanamuttu  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15560-15573 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Gaussian beam propagating in a photopolymer undergoes self-phase modulation to form diffraction rings and then transforms into a single ring, which in turn ruptures into a necklace of stable self-trapped multimode filaments. The transitions of the beam between the three distinct nonlinear forms only occur at intensities where the beam-induced refractive index profile in the medium slowly evolves from a Gaussian to a flattened Gaussian.

© 2011 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(160.5470) Materials : Polymers
(190.0190) Nonlinear optics : Nonlinear optics
(190.5940) Nonlinear optics : Self-action effects
(260.5950) Physical optics : Self-focusing
(350.3450) Other areas of optics : Laser-induced chemistry
(110.6895) Imaging systems : Three-dimensional lithography
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: June 7, 2011
Revised Manuscript: June 26, 2011
Manuscript Accepted: June 27, 2011
Published: July 28, 2011

Ana B. Villafranca and Kalaichelvi Saravanamuttu, "Spontaneous and sequential transitions of a Gaussian beam into diffraction rings, single ring and circular array of filaments in a photopolymer," Opt. Express 19, 15560-15573 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Soljačić, S. Sears, and M. Segev, “Self-Trapping of “Necklace” Beams in Self-Focusing Kerr Media,” Phys. Rev. Lett. 81(22), 48511–48514 (1998). [CrossRef]
  2. T. D. Grow, A. A. Ishaaya, L. T. Vuong, and A. L. Gaeta, “Collapse and stability of necklace beams in Kerr media,” Phys. Rev. Lett. 99(13), 133902 (2007). [CrossRef] [PubMed]
  3. A. S. Desyatnikov and Y. S. Kivshar, “Necklace-ring vector solitons,” Phys. Rev. Lett. 87(3), 033901 (2001). [CrossRef] [PubMed]
  4. J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B. A. Malomed, D. J. Frantzeskakis, and Z. Chen, “Necklacelike solitons in optically induced photonic lattices,” Phys. Rev. Lett. 94(11), 113902 (2005). [CrossRef] [PubMed]
  5. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96(13), 133901 (2006). [CrossRef] [PubMed]
  6. M. S. Bigelow, P. Zerom, and R. W. Boyd, “Breakup of ring beams carrying orbital angular momentum in sodium vapor,” Phys. Rev. Lett. 92(8), 083902 (2004). [CrossRef] [PubMed]
  7. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable Nonlinear Medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996). [CrossRef] [PubMed]
  8. J. M. Soto-Crespo, D. R. Heatley, E. M. Wright, and N. N. Akhmediev, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. A 44(1), 636–644 (1991). [CrossRef] [PubMed]
  9. M. D. Feit and J. A. Fleck., “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5(3), 633–640 (1988). [CrossRef]
  10. A. B. Villafranca and K. Saravanamuttu, “An Experimental Study of the Dynamics and Temporal Evolution of Self-Trapped Laser Beams in a Photopolymerizable Organosiloxane,” J. Phys. Chem. C 112(44), 17388–17396 (2008). [CrossRef]
  11. T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-Gaussian Beams,” Opt. Express 14(12), 5468–5475 (2006). [CrossRef] [PubMed]
  12. G. Fibich, N. Gavish, and X. P. Wang, “New singular solutions of the nonlinear Schrodinger equation,” in Physica D: Nonlinear Phenomena (2005), pp. 193–220.
  13. A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009). [CrossRef]
  14. K. Saravanamuttu, X. M. Du, S. I. Najafi, and M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin films: implications for integrated optics device fabrication,” Rev. Can. Chim. 76(11), 1717–1729 (1998). [CrossRef]
  15. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996). [CrossRef] [PubMed]
  16. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6(9), 411–413 (1981). [PubMed]
  17. J. A. Buck, Fundamentals of Optical Fibers (Wiley and Sons, Inc., New York, 2004).
  18. S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer, New York, 2001)
  19. T. M. Monro, C. M. De Sterke, and L. J. Poladian, “Catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
  20. R. Y. Chiao, M. A. Johnson, S. Krinsky, H. A. Smith, C. H. Townes, and E. Garmire, “A new class of trapped light filaments,” IEEE J. Quantum Electron. 2(9), 467–469 (1966). [CrossRef]
  21. A. J. Campillo, “Small-Scale Self-focusing,” in Self-Focusing: Past and Present, R. W. Boyd, S. G. Lukishova, and Y. R. Shen, eds. (Springer Science, 2009), pp. 157–173.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited