OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15596–15602

Corrugated metallodielectric superlattices via release-rollup assembly

N. Gibbons and J. J. Baumberg  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15596-15602 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (9037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A ‘release-rollup’ assembly (RRA) technique is described that yields corrugated metallodielectric superlattices. Bilayers of polymer/Au cast onto diffraction gratings are released and rolled into multilayers with registration of the stacked corrugations across mm-scales. Optical imaging reveals Moiré fringes with reflection spectra that track the bilayer thickness due to mis-stacking. Angular-resolved spectra show spectrally-modulated diffraction opposite to that of the metallic stop-bands, but which agrees with a simple model. This scalable fabrication strategy is thus widely exploitable for laterally patterned metamaterials and optical superlattices.

© 2011 OSA

OCIS Codes
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5293) Materials : Photonic bandgap materials

ToC Category:

Original Manuscript: April 7, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 9, 2011
Published: July 29, 2011

N. Gibbons and J. J. Baumberg, "Corrugated metallodielectric superlattices via release-rollup assembly," Opt. Express 19, 15596-15602 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, “‘XLII. on a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  2. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfelds waves),” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  3. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998). [CrossRef]
  4. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008). [CrossRef]
  5. J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008). [CrossRef]
  6. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009). [CrossRef] [PubMed]
  7. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  8. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  9. M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005). [CrossRef] [PubMed]
  10. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF photonic band gaps,” Appl. Phys. Lett. 72, 1676 (1998). [CrossRef]
  11. N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009). [CrossRef]
  12. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999). [CrossRef]
  13. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004). [CrossRef] [PubMed]
  14. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  15. Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009). [CrossRef]
  16. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  17. C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009). [CrossRef]
  18. W. T. S. Huck, “Artificial skins: hierarchical wrinkling,” Nat. Mater. 4, 271–272 (2005). [CrossRef] [PubMed]
  19. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005). [CrossRef] [PubMed]
  20. O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005). [CrossRef]
  21. S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009). [CrossRef] [PubMed]
  22. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003). [CrossRef]
  23. F. Huang and J.J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10, 1787–1792 (2010) [CrossRef] [PubMed]
  24. I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010) [CrossRef] [PubMed]
  25. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010). [CrossRef] [PubMed]
  26. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004). [CrossRef]
  27. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited